This fixes some common incompatibilities with eager mode execution. PiperOrigin-RevId: 319258451 Change-Id: I93c66eb3b8c75f75fd9c1deb9526fbd937b93805
191 lines
8.7 KiB
Python
191 lines
8.7 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Momentum."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import momentum as momentum_lib
|
|
|
|
|
|
class MomentumOptimizerTest(xla_test.XLATestCase):
|
|
|
|
def _update_nesterov_momentum_numpy(self, var, accum, g, lr, momentum):
|
|
var += accum * lr * momentum
|
|
accum = accum * momentum + g
|
|
var -= lr * accum
|
|
var -= accum * lr * momentum
|
|
return var, accum
|
|
|
|
def testBasic(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
|
|
mom_opt = momentum_lib.MomentumOptimizer(
|
|
learning_rate=2.0, momentum=0.9)
|
|
mom_update = mom_opt.apply_gradients(
|
|
zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Check we have slots
|
|
self.assertEqual(["momentum"], mom_opt.get_slot_names())
|
|
slot0 = mom_opt.get_slot(var0, "momentum")
|
|
self.assertEqual(slot0.get_shape(), var0.get_shape())
|
|
self.assertFalse(slot0 in variables.trainable_variables())
|
|
slot1 = mom_opt.get_slot(var1, "momentum")
|
|
self.assertEqual(slot1.get_shape(), var1.get_shape())
|
|
self.assertFalse(slot1 in variables.trainable_variables())
|
|
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
# Step 1: the momentum accumulators where 0. So we should see a normal
|
|
# update: v -= grad * learning_rate
|
|
mom_update.run()
|
|
# Check that the momentum accumulators have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([0.1, 0.1]), self.evaluate(slot0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([0.01, 0.01]), self.evaluate(slot1))
|
|
# Check that the parameters have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
|
|
self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
|
|
self.evaluate(var1))
|
|
# Step 2: the momentum accumulators contain the previous update.
|
|
mom_update.run()
|
|
# Check that the momentum accumulators have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
|
|
self.evaluate(slot0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
|
|
self.evaluate(slot1))
|
|
# Check that the parameters have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([
|
|
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
|
|
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
|
|
]), self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([
|
|
2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
|
|
3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
|
|
]), self.evaluate(var1))
|
|
|
|
def testNesterovMomentum(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([0.1, 0.2], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([0.3, 0.4], dtype=dtype)
|
|
var0_np = np.array([0.1, 0.2], dtype=dtype)
|
|
var1_np = np.array([0.3, 0.4], dtype=dtype)
|
|
accum0_np = np.array([0.0, 0.0], dtype=dtype)
|
|
accum1_np = np.array([0.0, 0.0], dtype=dtype)
|
|
cost = 0.4 * var0 * var0 + 0.9 * var1
|
|
global_step = resource_variable_ops.ResourceVariable(
|
|
array_ops.zeros([], dtypes.int32), name="global_step")
|
|
mom_op = momentum_lib.MomentumOptimizer(
|
|
learning_rate=0.1, momentum=0.9, use_nesterov=True)
|
|
opt_op = mom_op.minimize(cost, global_step, [var0, var1])
|
|
self.evaluate(variables.global_variables_initializer())
|
|
for _ in range(1, 5):
|
|
opt_op.run()
|
|
var0_np, accum0_np = self._update_nesterov_momentum_numpy(
|
|
var0_np, accum0_np, var0_np * 0.8, 0.1, 0.9)
|
|
var1_np, accum1_np = self._update_nesterov_momentum_numpy(
|
|
var1_np, accum1_np, 0.9, 0.1, 0.9)
|
|
self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
|
|
|
|
def testTensorLearningRateAndMomentum(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
|
|
mom_opt = momentum_lib.MomentumOptimizer(
|
|
learning_rate=constant_op.constant(2.0),
|
|
momentum=constant_op.constant(0.9))
|
|
mom_update = mom_opt.apply_gradients(
|
|
zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Check we have slots
|
|
self.assertEqual(["momentum"], mom_opt.get_slot_names())
|
|
slot0 = mom_opt.get_slot(var0, "momentum")
|
|
self.assertEqual(slot0.get_shape(), var0.get_shape())
|
|
self.assertFalse(slot0 in variables.trainable_variables())
|
|
slot1 = mom_opt.get_slot(var1, "momentum")
|
|
self.assertEqual(slot1.get_shape(), var1.get_shape())
|
|
self.assertFalse(slot1 in variables.trainable_variables())
|
|
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
# Step 1: the momentum accumulators where 0. So we should see a normal
|
|
# update: v -= grad * learning_rate
|
|
mom_update.run()
|
|
# Check that the momentum accumulators have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([0.1, 0.1]), self.evaluate(slot0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([0.01, 0.01]), self.evaluate(slot1))
|
|
# Check that the parameters have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([1.0 - (0.1 * 2.0), 2.0 - (0.1 * 2.0)]),
|
|
self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([3.0 - (0.01 * 2.0), 4.0 - (0.01 * 2.0)]),
|
|
self.evaluate(var1))
|
|
# Step 2: the momentum accumulators contain the previous update.
|
|
mom_update.run()
|
|
# Check that the momentum accumulators have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([(0.9 * 0.1 + 0.1), (0.9 * 0.1 + 0.1)]),
|
|
self.evaluate(slot0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([(0.9 * 0.01 + 0.01), (0.9 * 0.01 + 0.01)]),
|
|
self.evaluate(slot1))
|
|
# Check that the parameters have been updated.
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([
|
|
1.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0),
|
|
2.0 - (0.1 * 2.0) - ((0.9 * 0.1 + 0.1) * 2.0)
|
|
]), self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([
|
|
2.98 - ((0.9 * 0.01 + 0.01) * 2.0),
|
|
3.98 - ((0.9 * 0.01 + 0.01) * 2.0)
|
|
]), self.evaluate(var1))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|