- Also, removed print statements from relu_op_test.py PiperOrigin-RevId: 287911742 Change-Id: Ib1763a5a010e5738e4d93e348391839e1e164108
731 lines
27 KiB
Python
731 lines
27 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for XLA matrix diag ops."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.platform import googletest
|
|
|
|
|
|
default_v2_alignment = "LEFT_LEFT"
|
|
alignment_list = ["RIGHT_LEFT", "LEFT_RIGHT"]
|
|
|
|
|
|
def zip_to_first_list_length(a, b):
|
|
if len(b) > len(a):
|
|
return zip(a, b[:len(a)])
|
|
return zip(a, b + [None] * (len(a) - len(b)))
|
|
|
|
|
|
# Routines to convert test cases to have diagonals in a specified alignment.
|
|
# Copied from //third_party/tensorflow/python/kernel_tests/diag_op_test.py
|
|
def repack_diagonals(packed_diagonals,
|
|
diag_index,
|
|
num_rows,
|
|
num_cols,
|
|
align=None):
|
|
# The original test cases are LEFT_LEFT aligned.
|
|
if align == default_v2_alignment or align is None:
|
|
return packed_diagonals
|
|
|
|
align = align.split("_")
|
|
d_lower, d_upper = diag_index
|
|
batch_dims = packed_diagonals.ndim - (2 if d_lower < d_upper else 1)
|
|
max_diag_len = packed_diagonals.shape[-1]
|
|
index = (slice(None),) * batch_dims
|
|
repacked_diagonals = np.zeros_like(packed_diagonals)
|
|
|
|
# Aligns each diagonal row-by-row.
|
|
for diag_index in range(d_lower, d_upper + 1):
|
|
diag_len = min(num_rows + min(0, diag_index), num_cols - max(0, diag_index))
|
|
row_index = d_upper - diag_index
|
|
padding_len = max_diag_len - diag_len
|
|
left_align = (diag_index >= 0 and
|
|
align[0] == "LEFT") or (diag_index <= 0 and
|
|
align[1] == "LEFT")
|
|
# Prepares index tuples.
|
|
extra_dim = tuple() if d_lower == d_upper else (row_index,)
|
|
packed_last_dim = (slice(None),) if left_align else (slice(0, diag_len, 1),)
|
|
repacked_last_dim = (slice(None),) if left_align else (slice(
|
|
padding_len, max_diag_len, 1),)
|
|
packed_index = index + extra_dim + packed_last_dim
|
|
repacked_index = index + extra_dim + repacked_last_dim
|
|
|
|
# Repacks the diagonal.
|
|
repacked_diagonals[repacked_index] = packed_diagonals[packed_index]
|
|
return repacked_diagonals
|
|
|
|
|
|
def repack_diagonals_in_tests(tests, align=None):
|
|
# The original test cases are LEFT_LEFT aligned.
|
|
if align == default_v2_alignment or align is None:
|
|
return tests
|
|
|
|
new_tests = dict()
|
|
# Loops through each case.
|
|
for diag_index, (packed_diagonals, padded_diagonals) in tests.items():
|
|
num_rows, num_cols = padded_diagonals.shape[-2:]
|
|
repacked_diagonals = repack_diagonals(
|
|
packed_diagonals, diag_index, num_rows, num_cols, align=align)
|
|
new_tests[diag_index] = (repacked_diagonals, padded_diagonals)
|
|
|
|
return new_tests
|
|
|
|
|
|
# Test cases shared by MatrixDiagV2, MatrixDiagPartV2, and MatrixSetDiagV2.
|
|
# Copied from //third_party/tensorflow/python/kernel_tests/diag_op_test.py
|
|
def square_cases(align=None):
|
|
# pyformat: disable
|
|
mat = np.array([[[1, 2, 3, 4, 5],
|
|
[6, 7, 8, 9, 1],
|
|
[3, 4, 5, 6, 7],
|
|
[8, 9, 1, 2, 3],
|
|
[4, 5, 6, 7, 8]],
|
|
[[9, 1, 2, 3, 4],
|
|
[5, 6, 7, 8, 9],
|
|
[1, 2, 3, 4, 5],
|
|
[6, 7, 8, 9, 1],
|
|
[2, 3, 4, 5, 6]]])
|
|
tests = dict()
|
|
# tests[d_lower, d_upper] = (compact_diagonals, padded_diagonals)
|
|
tests[-1, -1] = (np.array([[6, 4, 1, 7],
|
|
[5, 2, 8, 5]]),
|
|
np.array([[[0, 0, 0, 0, 0],
|
|
[6, 0, 0, 0, 0],
|
|
[0, 4, 0, 0, 0],
|
|
[0, 0, 1, 0, 0],
|
|
[0, 0, 0, 7, 0]],
|
|
[[0, 0, 0, 0, 0],
|
|
[5, 0, 0, 0, 0],
|
|
[0, 2, 0, 0, 0],
|
|
[0, 0, 8, 0, 0],
|
|
[0, 0, 0, 5, 0]]]))
|
|
tests[-4, -3] = (np.array([[[8, 5],
|
|
[4, 0]],
|
|
[[6, 3],
|
|
[2, 0]]]),
|
|
np.array([[[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[8, 0, 0, 0, 0],
|
|
[4, 5, 0, 0, 0]],
|
|
[[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0],
|
|
[6, 0, 0, 0, 0],
|
|
[2, 3, 0, 0, 0]]]))
|
|
tests[-2, 1] = (np.array([[[2, 8, 6, 3, 0],
|
|
[1, 7, 5, 2, 8],
|
|
[6, 4, 1, 7, 0],
|
|
[3, 9, 6, 0, 0]],
|
|
[[1, 7, 4, 1, 0],
|
|
[9, 6, 3, 9, 6],
|
|
[5, 2, 8, 5, 0],
|
|
[1, 7, 4, 0, 0]]]),
|
|
np.array([[[1, 2, 0, 0, 0],
|
|
[6, 7, 8, 0, 0],
|
|
[3, 4, 5, 6, 0],
|
|
[0, 9, 1, 2, 3],
|
|
[0, 0, 6, 7, 8]],
|
|
[[9, 1, 0, 0, 0],
|
|
[5, 6, 7, 0, 0],
|
|
[1, 2, 3, 4, 0],
|
|
[0, 7, 8, 9, 1],
|
|
[0, 0, 4, 5, 6]]]))
|
|
tests[2, 4] = (np.array([[[5, 0, 0],
|
|
[4, 1, 0],
|
|
[3, 9, 7]],
|
|
[[4, 0, 0],
|
|
[3, 9, 0],
|
|
[2, 8, 5]]]),
|
|
np.array([[[0, 0, 3, 4, 5],
|
|
[0, 0, 0, 9, 1],
|
|
[0, 0, 0, 0, 7],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]],
|
|
[[0, 0, 2, 3, 4],
|
|
[0, 0, 0, 8, 9],
|
|
[0, 0, 0, 0, 5],
|
|
[0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0]]]))
|
|
# pyformat: enable
|
|
return (mat, repack_diagonals_in_tests(tests, align))
|
|
|
|
|
|
def tall_cases(align=None):
|
|
# pyformat: disable
|
|
mat = np.array([[[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9],
|
|
[9, 8, 7],
|
|
[6, 5, 4]],
|
|
[[3, 2, 1],
|
|
[1, 2, 3],
|
|
[4, 5, 6],
|
|
[7, 8, 9],
|
|
[9, 8, 7]]])
|
|
tests = dict()
|
|
# tests[d_lower, d_upper] = (compact_diagonals, padded_diagonals)
|
|
tests[0, 0] = (np.array([[1, 5, 9],
|
|
[3, 2, 6]]),
|
|
np.array([[[1, 0, 0],
|
|
[0, 5, 0],
|
|
[0, 0, 9],
|
|
[0, 0, 0]],
|
|
[[3, 0, 0],
|
|
[0, 2, 0],
|
|
[0, 0, 6],
|
|
[0, 0, 0]]]))
|
|
tests[-4, -3] = (np.array([[[9, 5],
|
|
[6, 0]],
|
|
[[7, 8],
|
|
[9, 0]]]),
|
|
np.array([[[0, 0, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
[9, 0, 0],
|
|
[6, 5, 0]],
|
|
[[0, 0, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
[7, 0, 0],
|
|
[9, 8, 0]]]))
|
|
tests[-2, -1] = (np.array([[[4, 8, 7],
|
|
[7, 8, 4]],
|
|
[[1, 5, 9],
|
|
[4, 8, 7]]]),
|
|
np.array([[[0, 0, 0],
|
|
[4, 0, 0],
|
|
[7, 8, 0],
|
|
[0, 8, 7],
|
|
[0, 0, 4]],
|
|
[[0, 0, 0],
|
|
[1, 0, 0],
|
|
[4, 5, 0],
|
|
[0, 8, 9],
|
|
[0, 0, 7]]]))
|
|
tests[-2, 1] = (np.array([[[2, 6, 0],
|
|
[1, 5, 9],
|
|
[4, 8, 7],
|
|
[7, 8, 4]],
|
|
[[2, 3, 0],
|
|
[3, 2, 6],
|
|
[1, 5, 9],
|
|
[4, 8, 7]]]),
|
|
np.array([[[1, 2, 0],
|
|
[4, 5, 6],
|
|
[7, 8, 9],
|
|
[0, 8, 7],
|
|
[0, 0, 4]],
|
|
[[3, 2, 0],
|
|
[1, 2, 3],
|
|
[4, 5, 6],
|
|
[0, 8, 9],
|
|
[0, 0, 7]]]))
|
|
tests[1, 2] = (np.array([[[3, 0],
|
|
[2, 6]],
|
|
[[1, 0],
|
|
[2, 3]]]),
|
|
np.array([[[0, 2, 3],
|
|
[0, 0, 6],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0]],
|
|
[[0, 2, 1],
|
|
[0, 0, 3],
|
|
[0, 0, 0],
|
|
[0, 0, 0],
|
|
[0, 0, 0]]]))
|
|
# pyformat: enable
|
|
return (mat, repack_diagonals_in_tests(tests, align))
|
|
|
|
|
|
def fat_cases(align=None):
|
|
# pyformat: disable
|
|
mat = np.array([[[1, 2, 3, 4],
|
|
[5, 6, 7, 8],
|
|
[9, 1, 2, 3]],
|
|
[[4, 5, 6, 7],
|
|
[8, 9, 1, 2],
|
|
[3, 4, 5, 6]]])
|
|
tests = dict()
|
|
# tests[d_lower, d_upper] = (compact_diagonals, padded_diagonals)
|
|
tests[0, 0] = (np.array([[1, 6, 2],
|
|
[4, 9, 5]]),
|
|
np.array([[[1, 0, 0, 0],
|
|
[0, 6, 0, 0],
|
|
[0, 0, 2, 0]],
|
|
[[4, 0, 0, 0],
|
|
[0, 9, 0, 0],
|
|
[0, 0, 5, 0]]]))
|
|
tests[2, 2] = (np.array([[3, 8],
|
|
[6, 2]]),
|
|
np.array([[[0, 0, 3, 0],
|
|
[0, 0, 0, 8],
|
|
[0, 0, 0, 0]],
|
|
[[0, 0, 6, 0],
|
|
[0, 0, 0, 2],
|
|
[0, 0, 0, 0]]]))
|
|
tests[-2, 0] = (np.array([[[1, 6, 2],
|
|
[5, 1, 0],
|
|
[9, 0, 0]],
|
|
[[4, 9, 5],
|
|
[8, 4, 0],
|
|
[3, 0, 0]]]),
|
|
np.array([[[1, 0, 0, 0],
|
|
[5, 6, 0, 0],
|
|
[9, 1, 2, 0]],
|
|
[[4, 0, 0, 0],
|
|
[8, 9, 0, 0],
|
|
[3, 4, 5, 0]]]))
|
|
tests[-1, 1] = (np.array([[[2, 7, 3],
|
|
[1, 6, 2],
|
|
[5, 1, 0]],
|
|
[[5, 1, 6],
|
|
[4, 9, 5],
|
|
[8, 4, 0]]]),
|
|
np.array([[[1, 2, 0, 0],
|
|
[5, 6, 7, 0],
|
|
[0, 1, 2, 3]],
|
|
[[4, 5, 0, 0],
|
|
[8, 9, 1, 0],
|
|
[0, 4, 5, 6]]]))
|
|
tests[0, 3] = (np.array([[[4, 0, 0],
|
|
[3, 8, 0],
|
|
[2, 7, 3],
|
|
[1, 6, 2]],
|
|
[[7, 0, 0],
|
|
[6, 2, 0],
|
|
[5, 1, 6],
|
|
[4, 9, 5]]]),
|
|
np.array([[[1, 2, 3, 4],
|
|
[0, 6, 7, 8],
|
|
[0, 0, 2, 3]],
|
|
[[4, 5, 6, 7],
|
|
[0, 9, 1, 2],
|
|
[0, 0, 5, 6]]]))
|
|
# pyformat: enable
|
|
return (mat, repack_diagonals_in_tests(tests, align))
|
|
|
|
|
|
def all_tests(align=None):
|
|
return [square_cases(align), tall_cases(align), fat_cases(align)]
|
|
|
|
|
|
class MatrixDiagTest(xla_test.XLATestCase):
|
|
|
|
def _assertOpOutputMatchesExpected(self,
|
|
params,
|
|
solution,
|
|
rtol=1e-3,
|
|
atol=1e-5):
|
|
"""Verifies that matrix_diag produces `solution` when fed `params`.
|
|
|
|
Args:
|
|
params: dictionary containing input parameters to matrix_diag.
|
|
solution: numpy array representing the expected output of matrix_diag.
|
|
rtol: relative tolerance for equality test.
|
|
atol: absolute tolerance for equality test.
|
|
"""
|
|
diagonal = params["diagonal"]
|
|
with self.session() as session:
|
|
for dtype in self.numeric_types - {np.int8, np.uint8}:
|
|
expected = solution.astype(dtype)
|
|
with self.test_scope():
|
|
params["diagonal"] = array_ops.placeholder(
|
|
dtype, diagonal.shape, name="diagonal")
|
|
output = array_ops.matrix_diag(**params)
|
|
result = session.run(output,
|
|
{params["diagonal"]: diagonal.astype(dtype)})
|
|
self.assertEqual(output.dtype, expected.dtype)
|
|
self.assertAllCloseAccordingToType(
|
|
expected, result, rtol=rtol, atol=atol, bfloat16_rtol=0.03)
|
|
|
|
# Generic tests applicable to both v1 and v2 ops.
|
|
# Originally from unary_ops_tests.py.
|
|
def testV1(self):
|
|
# pyformat: disable
|
|
vecs1 = np.array([[1, 2],
|
|
[3, 4]])
|
|
solution1 = np.array([[[1, 0], [0, 2]],
|
|
[[3, 0], [0, 4]]])
|
|
vecs2 = np.array([1, 2, 3, 4])
|
|
solution2 = np.array([[1, 0, 0, 0],
|
|
[0, 2, 0, 0],
|
|
[0, 0, 3, 0],
|
|
[0, 0, 0, 4]])
|
|
vecs3 = np.array([[[1, 2, 3],
|
|
[4, 5, 6]],
|
|
[[7, 8, 9], # pylint: disable=bad-whitespace
|
|
[10, 11, 12]]])
|
|
solution3 = np.array([[[[1, 0, 0],
|
|
[0, 2, 0],
|
|
[0, 0, 3]],
|
|
[[4, 0, 0],
|
|
[0, 5, 0],
|
|
[0, 0, 6]]],
|
|
[[[7, 0, 0],
|
|
[0, 8, 0],
|
|
[0, 0, 9]],
|
|
[[10, 0, 0],
|
|
[0, 11, 0],
|
|
[0, 0, 12]]]])
|
|
# pyformat: enable
|
|
self._assertOpOutputMatchesExpected({"diagonal": vecs1}, solution1)
|
|
self._assertOpOutputMatchesExpected({"diagonal": vecs2}, solution2)
|
|
self._assertOpOutputMatchesExpected({"diagonal": vecs3}, solution3)
|
|
|
|
# From here onwards are v2-only tests.
|
|
def testSquare(self):
|
|
for align in alignment_list:
|
|
for _, tests in [square_cases(align)]:
|
|
for diag_index, (vecs, solution) in tests.items():
|
|
params = {"diagonal": vecs[0], "k": diag_index, "align": align}
|
|
self._assertOpOutputMatchesExpected(params, solution[0])
|
|
|
|
def testSquareBatch(self):
|
|
for align in alignment_list:
|
|
for _, tests in [square_cases(align)]:
|
|
for diag_index, (vecs, solution) in tests.items():
|
|
params = {"diagonal": vecs, "k": diag_index, "align": align}
|
|
self._assertOpOutputMatchesExpected(params, solution)
|
|
|
|
def testRectangularBatch(self):
|
|
# Stores expected num_rows and num_cols (when the other is given).
|
|
# expected[(d_lower, d_upper)] = (expected_num_rows, expected_num_cols)
|
|
test_list = list()
|
|
|
|
# Do not align the test cases here. Re-alignment needs to happen after the
|
|
# solution shape is updated.
|
|
# Square cases:
|
|
expected = {
|
|
(-1, -1): (5, 4),
|
|
(-4, -3): (5, 2),
|
|
(-2, 1): (5, 5),
|
|
(2, 4): (3, 5),
|
|
}
|
|
test_list.append((expected, square_cases()))
|
|
|
|
# Tall cases
|
|
expected = {
|
|
(0, 0): (3, 3),
|
|
(-4, -3): (5, 2),
|
|
(-2, -1): (4, 3),
|
|
(-2, 1): (3, 3),
|
|
(1, 2): (2, 3)
|
|
}
|
|
test_list.append((expected, tall_cases()))
|
|
|
|
# Fat cases
|
|
expected = {
|
|
(2, 2): (2, 4),
|
|
(-2, 0): (3, 3),
|
|
(-1, 1): (3, 3),
|
|
(0, 3): (3, 3)
|
|
}
|
|
test_list.append((expected, fat_cases()))
|
|
|
|
# Giving both num_rows and num_cols
|
|
align = alignment_list[0]
|
|
for _, tests in [tall_cases(align), fat_cases(align)]:
|
|
for diag_index, (vecs, solution) in tests.items():
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"diagonal": vecs,
|
|
"k": diag_index,
|
|
"num_rows": solution.shape[-2],
|
|
"num_cols": solution.shape[-1],
|
|
"align": align
|
|
}, solution)
|
|
|
|
# We go through each alignment in a round-robin manner.
|
|
align_index = 0
|
|
|
|
# Giving just num_rows or num_cols.
|
|
for expected, (_, tests) in test_list:
|
|
for diag_index, (new_num_rows, new_num_cols) in expected.items():
|
|
align = alignment_list[align_index]
|
|
align_index = (align_index + 1) % len(alignment_list)
|
|
vecs, solution = tests[diag_index]
|
|
solution_given_num_rows = solution.take(
|
|
indices=range(new_num_cols), axis=-1)
|
|
# Repacks the diagonal input according to the new solution shape.
|
|
vecs_given_num_rows = repack_diagonals(
|
|
vecs,
|
|
diag_index,
|
|
solution_given_num_rows.shape[-2],
|
|
new_num_cols,
|
|
align=align)
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"diagonal": vecs_given_num_rows,
|
|
"k": diag_index,
|
|
"num_rows": solution_given_num_rows.shape[-2],
|
|
"align": align
|
|
}, solution_given_num_rows)
|
|
solution_given_num_cols = solution.take(
|
|
indices=range(new_num_rows), axis=-2)
|
|
# Repacks the diagonal input according to the new solution shape.
|
|
vecs_given_num_cols = repack_diagonals(
|
|
vecs,
|
|
diag_index,
|
|
new_num_rows,
|
|
solution_given_num_cols.shape[-1],
|
|
align=align)
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"diagonal": vecs_given_num_cols,
|
|
"k": diag_index,
|
|
"num_cols": solution_given_num_cols.shape[-1],
|
|
"align": align
|
|
}, solution_given_num_cols)
|
|
|
|
def testPadding(self):
|
|
for padding_value, align in zip_to_first_list_length([555, -11],
|
|
alignment_list):
|
|
for _, tests in all_tests(align):
|
|
for diag_index, (vecs, solution) in tests.items():
|
|
mask = (solution == 0)
|
|
solution = solution + (mask * padding_value)
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"diagonal": vecs,
|
|
"k": diag_index,
|
|
"num_rows": solution.shape[-2],
|
|
"num_cols": solution.shape[-1],
|
|
"padding_value": padding_value,
|
|
"align": align
|
|
}, solution)
|
|
|
|
|
|
class MatrixSetDiagTest(xla_test.XLATestCase):
|
|
|
|
def _assertOpOutputMatchesExpected(self,
|
|
params,
|
|
solution,
|
|
rtol=1e-3,
|
|
atol=1e-5):
|
|
"""Verifies that matrix_set_diag produces `solution` when fed `params`.
|
|
|
|
Args:
|
|
params: dictionary containing input parameters to matrix_set_diag.
|
|
solution: numpy array representing the expected output of matrix_set_diag.
|
|
rtol: relative tolerance for equality test.
|
|
atol: absolute tolerance for equality test.
|
|
"""
|
|
input = params["input"] # pylint: disable=redefined-builtin
|
|
diagonal = params["diagonal"]
|
|
with self.session() as session:
|
|
for dtype in self.numeric_types - {np.int8, np.uint8}:
|
|
expected = solution.astype(dtype)
|
|
with self.test_scope():
|
|
params["input"] = array_ops.placeholder(
|
|
dtype, input.shape, name="input")
|
|
params["diagonal"] = array_ops.placeholder(
|
|
dtype, diagonal.shape, name="diagonal")
|
|
output = array_ops.matrix_set_diag(**params)
|
|
result = session.run(
|
|
output, {
|
|
params["input"]: input.astype(dtype),
|
|
params["diagonal"]: diagonal.astype(dtype)
|
|
})
|
|
self.assertEqual(output.dtype, expected.dtype)
|
|
self.assertAllCloseAccordingToType(
|
|
expected, result, rtol=rtol, atol=atol, bfloat16_rtol=0.03)
|
|
|
|
# Generic tests applicable to both v1 and v2 ops.
|
|
# Originally from binary_ops_tests.py.
|
|
def testV1(self):
|
|
test_cases = list()
|
|
|
|
# pyformat: disable
|
|
# pylint: disable=bad-whitespace
|
|
# Square cases.
|
|
input = np.array([[0, 1, 0], # pylint: disable=redefined-builtin
|
|
[1, 0, 1],
|
|
[1, 1, 1]])
|
|
diag = np.array([1, 2, 3])
|
|
solution = np.array([[1, 1, 0],
|
|
[1, 2, 1],
|
|
[1, 1, 3]])
|
|
test_cases.append(({"input": input, "diagonal": diag}, solution))
|
|
|
|
input = np.array([[[1, 0, 3],
|
|
[0, 2, 0],
|
|
[1, 0, 3]],
|
|
[[4, 0, 4],
|
|
[0, 5, 0],
|
|
[2, 0, 6]]])
|
|
diag = np.array([[-1, 0, -3],
|
|
[-4, -5, -6]])
|
|
solution = np.array([[[-1, 0, 3],
|
|
[ 0, 0, 0],
|
|
[ 1, 0, -3]],
|
|
[[-4, 0, 4],
|
|
[ 0, -5, 0],
|
|
[ 2, 0, -6]]])
|
|
test_cases.append(({"input": input, "diagonal": diag}, solution))
|
|
|
|
# Rectangular cases.
|
|
input = np.array([[0, 1, 0],
|
|
[1, 0, 1]])
|
|
diag = np.array([3, 4])
|
|
solution = np.array([[3, 1, 0],
|
|
[1, 4, 1]])
|
|
test_cases.append(({"input": input, "diagonal": diag}, solution))
|
|
|
|
input = np.array([[0, 1],
|
|
[1, 0],
|
|
[1, 1]])
|
|
diag = np.array([3, 4])
|
|
solution = np.array([[3, 1],
|
|
[1, 4],
|
|
[1, 1]])
|
|
test_cases.append(({"input": input, "diagonal": diag}, solution))
|
|
|
|
input = np.array([[[1, 0, 3],
|
|
[0, 2, 0]],
|
|
[[4, 0, 4],
|
|
[0, 5, 0]]])
|
|
diag = np.array([[-1, -2], [-4, -5]])
|
|
solution = np.array([[[-1, 0, 3],
|
|
[ 0, -2, 0]],
|
|
[[-4, 0, 4],
|
|
[ 0, -5, 0]]])
|
|
test_cases.append(({"input": input, "diagonal": diag}, solution))
|
|
# pylint: enable=bad-whitespace
|
|
# pyformat: enable
|
|
|
|
for test in test_cases:
|
|
self._assertOpOutputMatchesExpected(test[0], test[1])
|
|
|
|
# From here onwards are v2-only tests.
|
|
def testSingleMatrix(self):
|
|
for align in alignment_list:
|
|
for _, tests in all_tests(align):
|
|
for diag_index, (vecs, banded_mat) in tests.items():
|
|
mask = (banded_mat[0] == 0)
|
|
input_mat = np.random.randint(10, size=mask.shape)
|
|
solution = input_mat * mask + banded_mat[0]
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"input": input_mat,
|
|
"diagonal": vecs[0],
|
|
"k": diag_index,
|
|
"align": align
|
|
}, solution)
|
|
|
|
def testBatch(self):
|
|
for align in alignment_list:
|
|
for _, tests in all_tests(align):
|
|
for diag_index, (vecs, banded_mat) in tests.items():
|
|
mask = (banded_mat == 0)
|
|
input_mat = np.random.randint(10, size=mask.shape)
|
|
solution = input_mat * mask + banded_mat
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"input": input_mat,
|
|
"diagonal": vecs,
|
|
"k": diag_index,
|
|
"align": align
|
|
}, solution)
|
|
|
|
|
|
class MatrixDiagPartTest(xla_test.XLATestCase):
|
|
|
|
def _assertOpOutputMatchesExpected(self,
|
|
params,
|
|
solution,
|
|
rtol=1e-3,
|
|
atol=1e-5):
|
|
"""Verifies that matrix_diag_part produces `solution` when fed `params`.
|
|
|
|
Args:
|
|
params: dictionary containing input parameters to matrix_diag_part.
|
|
solution: numpy array representing the expected output.
|
|
rtol: relative tolerance for equality test.
|
|
atol: absolute tolerance for equality test.
|
|
"""
|
|
input = params["input"] # pylint: disable=redefined-builtin
|
|
with self.session() as session:
|
|
for dtype in self.numeric_types - {np.int8, np.uint8}:
|
|
expected = solution.astype(dtype)
|
|
with self.test_scope():
|
|
params["input"] = array_ops.placeholder(
|
|
dtype, input.shape, name="input")
|
|
output = array_ops.matrix_diag_part(**params)
|
|
result = session.run(output, {
|
|
params["input"]: input.astype(dtype),
|
|
})
|
|
self.assertEqual(output.dtype, expected.dtype)
|
|
self.assertAllCloseAccordingToType(
|
|
expected, result, rtol=rtol, atol=atol, bfloat16_rtol=0.03)
|
|
|
|
# Generic tests applicable to both v1 and v2 ops.
|
|
# Originally from unary_ops_tests.py.
|
|
def testV1(self):
|
|
matrices = np.arange(3 * 2 * 4).reshape([3, 2, 4])
|
|
solution = np.array([[0, 5], [8, 13], [16, 21]])
|
|
self._assertOpOutputMatchesExpected({"input": matrices}, solution)
|
|
|
|
# From here onwards are v2-only tests.
|
|
def testSingleMatrix(self):
|
|
for align in alignment_list:
|
|
test_list = [square_cases(align), tall_cases(align), fat_cases(align)]
|
|
for mat, tests in test_list:
|
|
for diag_index, (solution, _) in tests.items():
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"input": mat[0],
|
|
"k": diag_index,
|
|
"align": align
|
|
}, solution[0])
|
|
|
|
def testBatch(self):
|
|
for align in alignment_list:
|
|
for mat, tests in all_tests(align):
|
|
for diag_index, (solution, _) in tests.items():
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"input": mat,
|
|
"k": diag_index,
|
|
"align": align
|
|
}, solution)
|
|
|
|
def testPadding(self):
|
|
for padding_value, align in zip_to_first_list_length([555, -11],
|
|
alignment_list):
|
|
for mat, tests in all_tests(align):
|
|
for diag_index, (solution, _) in tests.items():
|
|
mask = (solution == 0)
|
|
solution = solution + (mask * padding_value)
|
|
self._assertOpOutputMatchesExpected(
|
|
{
|
|
"input": mat,
|
|
"k": diag_index,
|
|
"padding_value": padding_value,
|
|
"align": align
|
|
}, solution)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
googletest.main()
|