This fixes some common incompatibilities with eager mode execution. PiperOrigin-RevId: 319258451 Change-Id: I93c66eb3b8c75f75fd9c1deb9526fbd937b93805
357 lines
15 KiB
Python
357 lines
15 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Ftrl optimizer."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import adagrad
|
|
from tensorflow.python.training import ftrl
|
|
from tensorflow.python.training import gradient_descent
|
|
|
|
class FtrlOptimizerTest(xla_test.XLATestCase):
|
|
|
|
def initVariableAndGradient(self, dtype):
|
|
var0 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.02, 0.04], dtype=dtype)
|
|
|
|
return var0, var1, grads0, grads1
|
|
|
|
def equivAdagradTest_FtrlPart(self, steps, dtype):
|
|
var0, var1, grads0, grads1 = self.initVariableAndGradient(dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
learning_rate_power=-0.5, # using Adagrad learning rate
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var1))
|
|
|
|
# Run Ftrl for a few steps
|
|
for _ in range(steps):
|
|
ftrl_update.run()
|
|
|
|
return self.evaluate(var0), self.evaluate(var1)
|
|
|
|
def equivAdagradTest_AdagradPart(self, steps, dtype):
|
|
var0, var1, grads0, grads1 = self.initVariableAndGradient(dtype)
|
|
opt = adagrad.AdagradOptimizer(3.0, initial_accumulator_value=0.1)
|
|
adagrad_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var1))
|
|
|
|
# Run Adagrad for a few steps
|
|
for _ in range(steps):
|
|
adagrad_update.run()
|
|
|
|
return self.evaluate(var0), self.evaluate(var1)
|
|
|
|
def equivGradientDescentTest_FtrlPart(self, steps, dtype):
|
|
var0, var1, grads0, grads1 = self.initVariableAndGradient(dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
learning_rate_power=-0.0, # using Fixed learning rate
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var1))
|
|
|
|
# Run Ftrl for a few steps
|
|
for _ in range(steps):
|
|
ftrl_update.run()
|
|
|
|
return self.evaluate(var0), self.evaluate(var1)
|
|
|
|
def equivGradientDescentTest_GradientDescentPart(self, steps, dtype):
|
|
var0, var1, grads0, grads1 = self.initVariableAndGradient(dtype)
|
|
opt = gradient_descent.GradientDescentOptimizer(3.0, name="sgd")
|
|
sgd_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var1))
|
|
|
|
# Run GradientDescent for a few steps
|
|
for _ in range(steps):
|
|
sgd_update.run()
|
|
|
|
return self.evaluate(var0), self.evaluate(var1)
|
|
|
|
def testFtrlwithoutRegularization(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([0.0, 0.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.02], dtype=dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
|
self.assertAllClose([0.0, 0.0], self.evaluate(var1))
|
|
|
|
# Run 3 steps FTRL
|
|
for _ in range(3):
|
|
ftrl_update.run()
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-2.60260963, -4.29698515]),
|
|
self.evaluate(var0),
|
|
float_rtol=1e-4,
|
|
half_rtol=1e-2)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.28432083, -0.56694895]),
|
|
self.evaluate(var1),
|
|
float_rtol=1e-5,
|
|
half_rtol=1e-2)
|
|
|
|
def testFtrlwithoutRegularization2(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.02], dtype=dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.0,
|
|
l2_regularization_strength=0.0)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 3 steps FTRL
|
|
for _ in range(3):
|
|
ftrl_update.run()
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-2.55607247, -3.98729396]),
|
|
self.evaluate(var0),
|
|
1e-5,
|
|
1e-5,
|
|
float_rtol=1e-4)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.28232238, -0.56096673]), self.evaluate(var1), 1e-5,
|
|
1e-5)
|
|
|
|
def testFtrlWithL1(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.02], dtype=dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.001,
|
|
l2_regularization_strength=0.0)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 10 steps FTRL
|
|
for _ in range(10):
|
|
ftrl_update.run()
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-7.66718769, -10.91273689]),
|
|
self.evaluate(var0),
|
|
rtol=1e-4,
|
|
bfloat16_rtol=1e-1,
|
|
bfloat16_atol=1e-1)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.93460727, -1.86147261]),
|
|
self.evaluate(var1),
|
|
rtol=1e-4)
|
|
|
|
def testFtrlWithL1_L2(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.02], dtype=dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.001,
|
|
l2_regularization_strength=2.0)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 10 steps FTRL
|
|
for _ in range(10):
|
|
ftrl_update.run()
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.24059935, -0.46829352]),
|
|
self.evaluate(var0),
|
|
rtol=1e-5)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.02406147, -0.04830509]),
|
|
self.evaluate(var1),
|
|
rtol=1e-5)
|
|
|
|
def testFtrlWithL1_L2_L2Shrinkage(self):
|
|
"""Test the new FTRL op with support for l2 shrinkage.
|
|
|
|
The addition of this parameter which places a constant pressure on weights
|
|
towards the origin causes the gradient descent trajectory to differ. The
|
|
weights will tend to have smaller magnitudes with this parameter set.
|
|
"""
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([4.0, 3.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.02], dtype=dtype)
|
|
opt = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.001,
|
|
l2_regularization_strength=2.0,
|
|
l2_shrinkage_regularization_strength=0.1)
|
|
ftrl_update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType([4.0, 3.0], self.evaluate(var1))
|
|
|
|
# Run 10 steps FTRL
|
|
for _ in range(10):
|
|
ftrl_update.run()
|
|
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.22578996, -0.44345799]),
|
|
self.evaluate(var0),
|
|
rtol=1e-4)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-0.14378493, -0.13229476]),
|
|
self.evaluate(var1),
|
|
rtol=1e-4)
|
|
|
|
def testFtrlWithL2ShrinkageDoesNotChangeLrSchedule(self):
|
|
"""Verifies that l2 shrinkage in FTRL does not change lr schedule."""
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
grads1 = constant_op.constant([0.1, 0.2], dtype=dtype)
|
|
|
|
opt0 = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.001,
|
|
l2_regularization_strength=2.0,
|
|
l2_shrinkage_regularization_strength=0.1)
|
|
opt1 = ftrl.FtrlOptimizer(
|
|
3.0,
|
|
initial_accumulator_value=0.1,
|
|
l1_regularization_strength=0.001,
|
|
l2_regularization_strength=2.0)
|
|
update0 = opt0.apply_gradients([(grads0, var0)])
|
|
update1 = opt1.apply_gradients([(grads1, var1)])
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllCloseAccordingToType([1.0, 2.0], self.evaluate(var1))
|
|
|
|
# Run 10 steps FTRL
|
|
for _ in range(10):
|
|
update0.run()
|
|
update1.run()
|
|
|
|
# var0 is experiencing L2 shrinkage so it should be smaller than var1
|
|
# in magnitude.
|
|
self.assertTrue((var0.eval()**2 < self.evaluate(var1)**2).all())
|
|
accum0 = list(opt0._slots["accum"].values())[0].eval()
|
|
accum1 = list(opt1._slots["accum"].values())[0].eval()
|
|
# L2 shrinkage should not change how we update grad accumulator.
|
|
self.assertAllCloseAccordingToType(accum0, accum1)
|
|
|
|
# When variables are initialized with Zero, FTRL-Proximal has two properties:
|
|
# 1. Without L1&L2 but with fixed learning rate, FTRL-Proximal is identical
|
|
# with GradientDescent.
|
|
# 2. Without L1&L2 but with adaptive learning rate, FTRL-Proximal is idential
|
|
# with Adagrad.
|
|
# So, basing on these two properties, we test if our implementation of
|
|
# FTRL-Proximal performs same updates as Adagrad or GradientDescent.
|
|
def testEquivAdagradwithoutRegularization(self):
|
|
steps = 5
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
val0, val1 = self.equivAdagradTest_FtrlPart(steps, dtype)
|
|
with self.session(), self.test_scope():
|
|
val2, val3 = self.equivAdagradTest_AdagradPart(steps, dtype)
|
|
|
|
self.assertAllCloseAccordingToType(val0, val2, rtol=1e-4, half_rtol=1e-2)
|
|
self.assertAllCloseAccordingToType(val1, val3, rtol=1e-4, half_rtol=1e-2)
|
|
|
|
def testEquivGradientDescentwithoutRegularization(self):
|
|
steps = 5
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
val0, val1 = self.equivGradientDescentTest_FtrlPart(steps, dtype)
|
|
with self.session(), self.test_scope():
|
|
val2, val3 = self.equivGradientDescentTest_GradientDescentPart(
|
|
steps, dtype)
|
|
|
|
self.assertAllCloseAccordingToType(val0, val2, rtol=1e-5)
|
|
self.assertAllCloseAccordingToType(val1, val3, rtol=1e-5)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|