- assertEquals -> assertEqual - assertRaisesRegexp -> assertRegexpMatches - assertRegexpMatches -> assertRegex PiperOrigin-RevId: 319118081 Change-Id: Ieb457128522920ab55d6b69a7f244ab798a7d689
85 lines
3.4 KiB
Python
85 lines
3.4 KiB
Python
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for AddN."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import dtypes
|
|
from tensorflow.python.framework import errors
|
|
from tensorflow.python.ops import array_ops
|
|
from tensorflow.python.ops import list_ops
|
|
from tensorflow.python.ops import math_ops
|
|
from tensorflow.python.platform import test
|
|
|
|
|
|
class XlaAddNTest(xla_test.XLATestCase):
|
|
|
|
def testAddTensorLists(self):
|
|
with self.session(), self.test_scope():
|
|
l1 = list_ops.tensor_list_reserve(
|
|
element_shape=[], element_dtype=dtypes.float32, num_elements=3)
|
|
l2 = list_ops.tensor_list_reserve(
|
|
element_shape=[], element_dtype=dtypes.float32, num_elements=3)
|
|
l1 = list_ops.tensor_list_set_item(l1, 0, 5.)
|
|
l2 = list_ops.tensor_list_set_item(l2, 2, 10.)
|
|
|
|
l = math_ops.add_n([l1, l2])
|
|
self.assertAllEqual(
|
|
list_ops.tensor_list_stack(l, element_dtype=dtypes.float32),
|
|
[5.0, 0.0, 10.0])
|
|
|
|
def testAddTensorListsFailsIfLeadingDimsMismatch(self):
|
|
with self.session(), self.test_scope():
|
|
l1 = list_ops.tensor_list_reserve(
|
|
element_shape=[], element_dtype=dtypes.float32, num_elements=2)
|
|
l2 = list_ops.tensor_list_reserve(
|
|
element_shape=[], element_dtype=dtypes.float32, num_elements=3)
|
|
l = math_ops.add_n([l1, l2])
|
|
with self.assertRaisesRegex(
|
|
errors.InvalidArgumentError,
|
|
"TensorList arguments to AddN must all have the same shape"):
|
|
list_ops.tensor_list_stack(l, element_dtype=dtypes.float32).eval()
|
|
|
|
def testAddTensorListsFailsIfElementShapesMismatch(self):
|
|
with self.session() as session, self.test_scope():
|
|
# Use placeholders instead of constant values for shapes to prevent TF's
|
|
# shape inference from catching this early.
|
|
l1_element_shape = array_ops.placeholder(dtype=dtypes.int32)
|
|
l2_element_shape = array_ops.placeholder(dtype=dtypes.int32)
|
|
l1 = list_ops.tensor_list_reserve(
|
|
element_shape=l1_element_shape,
|
|
element_dtype=dtypes.float32,
|
|
num_elements=3)
|
|
l2 = list_ops.tensor_list_reserve(
|
|
element_shape=l2_element_shape,
|
|
element_dtype=dtypes.float32,
|
|
num_elements=3)
|
|
l = math_ops.add_n([l1, l2])
|
|
with self.assertRaisesRegex(
|
|
errors.InvalidArgumentError,
|
|
"TensorList arguments to AddN must all have the same shape"):
|
|
session.run(
|
|
list_ops.tensor_list_stack(l, element_dtype=dtypes.float32), {
|
|
l1_element_shape: [],
|
|
l2_element_shape: [2]
|
|
})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|