This fixes some common incompatibilities with eager mode execution. PiperOrigin-RevId: 319258451 Change-Id: I93c66eb3b8c75f75fd9c1deb9526fbd937b93805
129 lines
5.5 KiB
Python
129 lines
5.5 KiB
Python
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Tests for Adagrad."""
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
|
|
from tensorflow.compiler.tests import xla_test
|
|
from tensorflow.python.framework import constant_op
|
|
from tensorflow.python.ops import resource_variable_ops
|
|
from tensorflow.python.ops import variables
|
|
from tensorflow.python.platform import test
|
|
from tensorflow.python.training import adagrad
|
|
|
|
|
|
class AdagradOptimizerTest(xla_test.XLATestCase):
|
|
|
|
def testBasic(self):
|
|
for dtype in self.float_types | self.complex_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
|
|
ada_opt = adagrad.AdagradOptimizer(3.0, initial_accumulator_value=0.1)
|
|
ada_update = ada_opt.apply_gradients(
|
|
zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
# Run 3 steps of adagrad
|
|
for _ in range(3):
|
|
ada_update.run()
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-1.6026098728179932, -0.6026098728179932]),
|
|
self.evaluate(var0),
|
|
float_rtol=1e-5)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([2.715679168701172, 3.715679168701172]),
|
|
self.evaluate(var1),
|
|
float_rtol=1e-5)
|
|
|
|
def testTensorLearningRate(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
|
|
ada_opt = adagrad.AdagradOptimizer(
|
|
constant_op.constant(3.0), initial_accumulator_value=0.1)
|
|
ada_update = ada_opt.apply_gradients(
|
|
zip([grads0, grads1], [var0, var1]))
|
|
self.evaluate(variables.global_variables_initializer())
|
|
# Fetch params to validate initial values
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
# Run 3 steps of adagrad
|
|
for _ in range(3):
|
|
ada_update.run()
|
|
# Validate updated params
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-1.6026098728179932, -0.6026098728179932]),
|
|
self.evaluate(var0),
|
|
float_rtol=1e-5)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([2.715679168701172, 3.715679168701172]),
|
|
self.evaluate(var1),
|
|
float_rtol=1e-5)
|
|
|
|
def testSharing(self):
|
|
for dtype in self.float_types:
|
|
with self.session(), self.test_scope():
|
|
var0 = resource_variable_ops.ResourceVariable([1.0, 2.0], dtype=dtype)
|
|
var1 = resource_variable_ops.ResourceVariable([3.0, 4.0], dtype=dtype)
|
|
grads0 = constant_op.constant([0.1, 0.1], dtype=dtype)
|
|
grads1 = constant_op.constant([0.01, 0.01], dtype=dtype)
|
|
ada_opt = adagrad.AdagradOptimizer(3.0)
|
|
# Apply the optimizer twice. Both applications will use
|
|
# the same accums.
|
|
ada_update1 = ada_opt.apply_gradients(
|
|
zip([grads0, grads1], [var0, var1]))
|
|
ada_update2 = ada_opt.apply_gradients(
|
|
zip([grads0, grads1], [var0, var1]))
|
|
self.assertEqual(["accumulator"], ada_opt.get_slot_names())
|
|
slot0 = ada_opt.get_slot(var0, "accumulator")
|
|
self.assertEqual(slot0.get_shape(), var0.get_shape())
|
|
slot1 = ada_opt.get_slot(var1, "accumulator")
|
|
self.assertEqual(slot1.get_shape(), var1.get_shape())
|
|
self.evaluate(variables.global_variables_initializer())
|
|
|
|
# Fetch params to validate initial values.
|
|
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
|
self.assertAllClose([3.0, 4.0], self.evaluate(var1))
|
|
# Mix the first and the second adagrad for 3 steps.
|
|
ada_update1.run()
|
|
ada_update2.run()
|
|
ada_update1.run()
|
|
# Validate updated params (the same as with only 1 Adagrad).
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([-1.6026098728179932, -0.6026098728179932]),
|
|
self.evaluate(var0),
|
|
float_rtol=1e-5)
|
|
self.assertAllCloseAccordingToType(
|
|
np.array([2.715679168701172, 3.715679168701172]),
|
|
self.evaluate(var1),
|
|
float_rtol=1e-5)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test.main()
|