# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for RNN cells.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np import tensorflow as tf # TODO(ebrevdo): Remove once _linear is fully deprecated. # pylint: disable=protected-access from tensorflow.python.ops.rnn_cell import _linear as linear # pylint: enable=protected-access class RNNCellTest(tf.test.TestCase): def testLinear(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(1.0)): x = tf.zeros([1, 2]) l = linear([x], 2, False) sess.run([tf.initialize_all_variables()]) res = sess.run([l], {x.name: np.array([[1., 2.]])}) self.assertAllClose(res[0], [[3.0, 3.0]]) # Checks prevent you from accidentally creating a shared function. with self.assertRaises(ValueError): l1 = linear([x], 2, False) # But you can create a new one in a new scope and share the variables. with tf.variable_scope("l1") as new_scope: l1 = linear([x], 2, False) with tf.variable_scope(new_scope, reuse=True): linear([l1], 2, False) self.assertEqual(len(tf.trainable_variables()), 2) def testBasicRNNCell(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m = tf.zeros([1, 2]) g, _ = tf.nn.rnn_cell.BasicRNNCell(2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g], {x.name: np.array([[1., 1.]]), m.name: np.array([[0.1, 0.1]])}) self.assertEqual(res[0].shape, (1, 2)) def testGRUCell(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m = tf.zeros([1, 2]) g, _ = tf.nn.rnn_cell.GRUCell(2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g], {x.name: np.array([[1., 1.]]), m.name: np.array([[0.1, 0.1]])}) # Smoke test self.assertAllClose(res[0], [[0.175991, 0.175991]]) with tf.variable_scope("other", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 3]) # Test GRUCell with input_size != num_units. m = tf.zeros([1, 2]) g, _ = tf.nn.rnn_cell.GRUCell(2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g], {x.name: np.array([[1., 1., 1.]]), m.name: np.array([[0.1, 0.1]])}) # Smoke test self.assertAllClose(res[0], [[0.156736, 0.156736]]) def testBasicLSTMCell(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m = tf.zeros([1, 8]) g, out_m = tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.BasicLSTMCell(2)] * 2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g, out_m], {x.name: np.array([[1., 1.]]), m.name: 0.1 * np.ones([1, 8])}) self.assertEqual(len(res), 2) # The numbers in results were not calculated, this is just a smoke test. self.assertAllClose(res[0], [[0.24024698, 0.24024698]]) expected_mem = np.array([[0.68967271, 0.68967271, 0.44848421, 0.44848421, 0.39897051, 0.39897051, 0.24024698, 0.24024698]]) self.assertAllClose(res[1], expected_mem) with tf.variable_scope("other", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 3]) # Test BasicLSTMCell with input_size != num_units. m = tf.zeros([1, 4]) g, out_m = tf.nn.rnn_cell.BasicLSTMCell(2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g, out_m], {x.name: np.array([[1., 1., 1.]]), m.name: 0.1 * np.ones([1, 4])}) self.assertEqual(len(res), 2) def testBasicLSTMCellWithStateTuple(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m0 = tf.zeros([1, 4]) m1 = tf.zeros([1, 4]) cell = tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.BasicLSTMCell(2)] * 2, state_is_tuple=True) g, (out_m0, out_m1) = cell(x, (m0, m1)) sess.run([tf.initialize_all_variables()]) res = sess.run([g, out_m0, out_m1], {x.name: np.array([[1., 1.]]), m0.name: 0.1 * np.ones([1, 4]), m1.name: 0.1 * np.ones([1, 4])}) self.assertEqual(len(res), 3) # The numbers in results were not calculated, this is just a smoke test. # Note, however, these values should match the original # version having state_is_tuple=False. self.assertAllClose(res[0], [[0.24024698, 0.24024698]]) expected_mem0 = np.array([[0.68967271, 0.68967271, 0.44848421, 0.44848421]]) expected_mem1 = np.array([[0.39897051, 0.39897051, 0.24024698, 0.24024698]]) self.assertAllClose(res[1], expected_mem0) self.assertAllClose(res[2], expected_mem1) def testLSTMCell(self): with self.test_session() as sess: num_units = 8 num_proj = 6 state_size = num_units + num_proj batch_size = 3 input_size = 2 with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([batch_size, input_size]) m = tf.zeros([batch_size, state_size]) output, state = tf.nn.rnn_cell.LSTMCell( num_units=num_units, num_proj=num_proj, forget_bias=1.0)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([output, state], {x.name: np.array([[1., 1.], [2., 2.], [3., 3.]]), m.name: 0.1 * np.ones((batch_size, state_size))}) self.assertEqual(len(res), 2) # The numbers in results were not calculated, this is mostly just a # smoke test. self.assertEqual(res[0].shape, (batch_size, num_proj)) self.assertEqual(res[1].shape, (batch_size, state_size)) # Different inputs so different outputs and states for i in range(1, batch_size): self.assertTrue( float(np.linalg.norm((res[0][0, :] - res[0][i, :]))) > 1e-6) self.assertTrue( float(np.linalg.norm((res[1][0, :] - res[1][i, :]))) > 1e-6) def testOutputProjectionWrapper(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 3]) m = tf.zeros([1, 3]) cell = tf.nn.rnn_cell.OutputProjectionWrapper( tf.nn.rnn_cell.GRUCell(3), 2) g, new_m = cell(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g, new_m], {x.name: np.array([[1., 1., 1.]]), m.name: np.array([[0.1, 0.1, 0.1]])}) self.assertEqual(res[1].shape, (1, 3)) # The numbers in results were not calculated, this is just a smoke test. self.assertAllClose(res[0], [[0.231907, 0.231907]]) def testInputProjectionWrapper(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m = tf.zeros([1, 3]) cell = tf.nn.rnn_cell.InputProjectionWrapper( tf.nn.rnn_cell.GRUCell(3), num_proj=3) g, new_m = cell(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g, new_m], {x.name: np.array([[1., 1.]]), m.name: np.array([[0.1, 0.1, 0.1]])}) self.assertEqual(res[1].shape, (1, 3)) # The numbers in results were not calculated, this is just a smoke test. self.assertAllClose(res[0], [[0.154605, 0.154605, 0.154605]]) def testDropoutWrapper(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 3]) m = tf.zeros([1, 3]) keep = tf.zeros([]) + 1 g, new_m = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.GRUCell(3), keep, keep)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g, new_m], {x.name: np.array([[1., 1., 1.]]), m.name: np.array([[0.1, 0.1, 0.1]])}) self.assertEqual(res[1].shape, (1, 3)) # The numbers in results were not calculated, this is just a smoke test. self.assertAllClose(res[0], [[0.154605, 0.154605, 0.154605]]) def testEmbeddingWrapper(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 1], dtype=tf.int32) m = tf.zeros([1, 2]) g, new_m = tf.nn.rnn_cell.EmbeddingWrapper( tf.nn.rnn_cell.GRUCell(2), embedding_classes=3, embedding_size=2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g, new_m], {x.name: np.array([[1]]), m.name: np.array([[0.1, 0.1]])}) self.assertEqual(res[1].shape, (1, 2)) # The numbers in results were not calculated, this is just a smoke test. self.assertAllClose(res[0], [[0.17139, 0.17139]]) def testMultiRNNCell(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m = tf.zeros([1, 4]) _, ml = tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.GRUCell(2)] * 2)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run(ml, {x.name: np.array([[1., 1.]]), m.name: np.array([[0.1, 0.1, 0.1, 0.1]])}) # The numbers in results were not calculated, this is just a smoke test. self.assertAllClose(res, [[0.175991, 0.175991, 0.13248, 0.13248]]) def testMultiRNNCellWithStateTuple(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m_bad = tf.zeros([1, 4]) m_good = (tf.zeros([1, 2]), tf.zeros([1, 2])) # Test incorrectness of state with self.assertRaisesRegexp(ValueError, "Expected state .* a tuple"): tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.GRUCell(2)] * 2, state_is_tuple=True)(x, m_bad) _, ml = tf.nn.rnn_cell.MultiRNNCell( [tf.nn.rnn_cell.GRUCell(2)] * 2, state_is_tuple=True)(x, m_good) sess.run([tf.initialize_all_variables()]) res = sess.run(ml, {x.name: np.array([[1., 1.]]), m_good[0].name: np.array([[0.1, 0.1]]), m_good[1].name: np.array([[0.1, 0.1]])}) # The numbers in results were not calculated, this is just a # smoke test. However, these numbers should match those of # the test testMultiRNNCell. self.assertAllClose(res[0], [[0.175991, 0.175991]]) self.assertAllClose(res[1], [[0.13248, 0.13248]]) class SlimRNNCellTest(tf.test.TestCase): def testBasicRNNCell(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): x = tf.zeros([1, 2]) m = tf.zeros([1, 2]) my_cell = functools.partial(basic_rnn_cell, num_units=2) g, _ = tf.nn.rnn_cell.SlimRNNCell(my_cell)(x, m) sess.run([tf.initialize_all_variables()]) res = sess.run([g], {x.name: np.array([[1., 1.]]), m.name: np.array([[0.1, 0.1]])}) self.assertEqual(res[0].shape, (1, 2)) def testBasicRNNCellMatch(self): batch_size = 32 input_size = 100 num_units = 10 with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inputs = tf.random_uniform((batch_size, input_size)) _, initial_state = basic_rnn_cell(inputs, None, num_units) my_cell = functools.partial(basic_rnn_cell, num_units=num_units) slim_cell = tf.nn.rnn_cell.SlimRNNCell(my_cell) slim_outputs, slim_state = slim_cell(inputs, initial_state) rnn_cell = tf.nn.rnn_cell.BasicRNNCell(num_units) outputs, state = rnn_cell(inputs, initial_state) self.assertEqual(slim_outputs.get_shape(), outputs.get_shape()) self.assertEqual(slim_state.get_shape(), state.get_shape()) sess.run([tf.initialize_all_variables()]) res = sess.run([slim_outputs, slim_state, outputs, state]) self.assertAllClose(res[0], res[2]) self.assertAllClose(res[1], res[3]) def basic_rnn_cell(inputs, state, num_units, scope=None): if state is None: if inputs is not None: batch_size = inputs.get_shape()[0] dtype = inputs.dtype else: batch_size = 0 dtype = tf.float32 init_output = tf.zeros(tf.pack([batch_size, num_units]), dtype=dtype) init_state = tf.zeros(tf.pack([batch_size, num_units]), dtype=dtype) init_output.set_shape([batch_size, num_units]) init_state.set_shape([batch_size, num_units]) return init_output, init_state else: with tf.variable_op_scope([inputs, state], scope, "BasicRNNCell"): output = tf.tanh(linear([inputs, state], num_units, True)) return output, output if __name__ == "__main__": tf.test.main()