# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for AddN.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.compiler.tests import xla_test from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.ops import array_ops from tensorflow.python.ops import list_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class XlaAddNTest(xla_test.XLATestCase): def testAddTensorLists(self): with self.session(), self.test_scope(): l1 = list_ops.tensor_list_reserve( element_shape=[], element_dtype=dtypes.float32, num_elements=3) l2 = list_ops.tensor_list_reserve( element_shape=[], element_dtype=dtypes.float32, num_elements=3) l1 = list_ops.tensor_list_set_item(l1, 0, 5.) l2 = list_ops.tensor_list_set_item(l2, 2, 10.) l = math_ops.add_n([l1, l2]) self.assertAllEqual( list_ops.tensor_list_stack(l, element_dtype=dtypes.float32), [5.0, 0.0, 10.0]) def testAddTensorListsFailsIfLeadingDimsMismatch(self): with self.session(), self.test_scope(): l1 = list_ops.tensor_list_reserve( element_shape=[], element_dtype=dtypes.float32, num_elements=2) l2 = list_ops.tensor_list_reserve( element_shape=[], element_dtype=dtypes.float32, num_elements=3) l = math_ops.add_n([l1, l2]) with self.assertRaisesRegexp( errors.InvalidArgumentError, "TensorList arguments to AddN must all have the same shape"): list_ops.tensor_list_stack(l, element_dtype=dtypes.float32).eval() def testAddTensorListsFailsIfElementShapesMismatch(self): with self.session() as session, self.test_scope(): # Use placeholders instead of constant values for shapes to prevent TF's # shape inference from catching this early. l1_element_shape = array_ops.placeholder(dtype=dtypes.int32) l2_element_shape = array_ops.placeholder(dtype=dtypes.int32) l1 = list_ops.tensor_list_reserve( element_shape=l1_element_shape, element_dtype=dtypes.float32, num_elements=3) l2 = list_ops.tensor_list_reserve( element_shape=l2_element_shape, element_dtype=dtypes.float32, num_elements=3) l = math_ops.add_n([l1, l2]) with self.assertRaisesRegexp( errors.InvalidArgumentError, "TensorList arguments to AddN must all have the same shape"): session.run( list_ops.tensor_list_stack(l, element_dtype=dtypes.float32), { l1_element_shape: [], l2_element_shape: [2] }) if __name__ == "__main__": test.main()