# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Python ops defined in math_grad.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.debug.lib import check_numerics_callback from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import ops from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradient_checker_v2 from tensorflow.python.ops import gradients from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class SquaredDifferenceOpTest(test.TestCase): def _testGrad(self, left_shape, right_shape): if len(left_shape) > len(right_shape): output_shape = left_shape else: output_shape = right_shape l = np.random.randn(*left_shape) r = np.random.randn(*right_shape) with self.cached_session(use_gpu=True): left_tensor = constant_op.constant(l, shape=left_shape) right_tensor = constant_op.constant(r, shape=right_shape) output = math_ops.squared_difference(left_tensor, right_tensor) left_err = gradient_checker.compute_gradient_error( left_tensor, left_shape, output, output_shape, x_init_value=l) right_err = gradient_checker.compute_gradient_error( right_tensor, right_shape, output, output_shape, x_init_value=r) self.assertLess(left_err, 1e-10) self.assertLess(right_err, 1e-10) @test_util.run_deprecated_v1 def testGrad(self): self._testGrad([1, 2, 3, 2], [3, 2]) self._testGrad([2, 4], [3, 2, 4]) class AbsOpTest(test.TestCase): def _biasedRandN(self, shape, bias=0.1, sigma=1.0): """Returns samples from a normal distribution shifted `bias` away from 0.""" value = np.random.randn(*shape) * sigma return value + np.sign(value) * bias def _testGrad(self, shape, dtype=None, max_error=None, bias=None, sigma=None): np.random.seed(7) if dtype in (dtypes.complex64, dtypes.complex128): value = math_ops.complex( self._biasedRandN( shape, bias=bias, sigma=sigma), self._biasedRandN( shape, bias=bias, sigma=sigma)) else: value = ops.convert_to_tensor( self._biasedRandN( shape, bias=bias), dtype=dtype) with self.cached_session(use_gpu=True): output = math_ops.abs(value) error = gradient_checker.compute_gradient_error( value, shape, output, output.get_shape().as_list()) self.assertLess(error, max_error) @test_util.run_deprecated_v1 def testComplexAbs(self): # Bias random test values away from zero to avoid numeric instabilities. self._testGrad( [3, 3], dtype=dtypes.float32, max_error=2e-5, bias=0.1, sigma=1.0) self._testGrad( [3, 3], dtype=dtypes.complex64, max_error=2e-5, bias=0.1, sigma=1.0) # Ensure stability near the pole at zero. self._testGrad( [3, 3], dtype=dtypes.float32, max_error=100.0, bias=0.0, sigma=0.1) self._testGrad( [3, 3], dtype=dtypes.complex64, max_error=100.0, bias=0.0, sigma=0.1) class MinOrMaxGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testMinGradient(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) outputs = math_ops.reduce_min(array_ops.concat([inputs, inputs], 0)) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [1], outputs, []) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testMaxGradient(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) outputs = math_ops.reduce_max(array_ops.concat([inputs, inputs], 0)) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [1], outputs, []) self.assertLess(error, 1e-4) class MaximumOrMinimumGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testMaximumGradient(self): inputs = constant_op.constant([1.0, 2.0, 3.0, 4.0], dtype=dtypes.float32) outputs = math_ops.maximum(inputs, 3.0) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [4], outputs, [4]) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testMinimumGradient(self): inputs = constant_op.constant([1.0, 2.0, 3.0, 4.0], dtype=dtypes.float32) outputs = math_ops.minimum(inputs, 2.0) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [4], outputs, [4]) self.assertLess(error, 1e-4) class ProdGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testProdGradient(self): inputs = constant_op.constant([[1., 2.], [3., 4.]], dtype=dtypes.float32) outputs = math_ops.reduce_prod(inputs) with self.cached_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testProdGradientForNegativeAxis(self): inputs = constant_op.constant([[1., 2.], [3., 4.]], dtype=dtypes.float32) outputs = math_ops.reduce_prod(inputs, -1) with self.cached_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testProdGradientComplex(self): for dtype in dtypes.complex64, dtypes.complex128: inputs = constant_op.constant([[1 + 3j, 2 - 1j], [3j, 4]], dtype=dtype) outputs = math_ops.reduce_prod(inputs) with self.cached_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testProdGradientForNegativeAxisComplex(self): for dtype in dtypes.complex64, dtypes.complex128: inputs = constant_op.constant([[1 + 3j, 2 - 1j], [3j, 4]], dtype=dtype) outputs = math_ops.reduce_prod(inputs, -1) with self.cached_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) @test_util.run_all_in_graph_and_eager_modes class EuclideanNormGradientTest(test.TestCase): def testBasic(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([3], dtype=dtype) grad = gradient_checker_v2.compute_gradient( math_ops.reduce_euclidean_norm, [x]) err = gradient_checker_v2.max_error(*grad) self.assertLess(err, 1e-3) def testNegative(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([-3], dtype=dtype) grad = gradient_checker_v2.compute_gradient( math_ops.reduce_euclidean_norm, [x]) err = gradient_checker_v2.max_error(*grad) self.assertLess(err, 1e-3) def testKeepdims(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([3], dtype=dtype) grad = gradient_checker_v2.compute_gradient( math_ops.reduce_euclidean_norm, [x]) err = gradient_checker_v2.max_error(*grad) self.assertLess(err, 1e-3) def testGradientChain(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([3], dtype=dtype) grad = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x) * 5, [x]) err = gradient_checker_v2.max_error(*grad) self.assertLess(err, 1e-3) def testTwoElements(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([3, -4], dtype=dtype) grad = gradient_checker_v2.compute_gradient( math_ops.reduce_euclidean_norm, [x]) err = gradient_checker_v2.max_error(*grad) self.assertLess(err, 1e-3) def testNegativeZero(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([1.0, -0.0], dtype=dtype) with backprop.GradientTape() as tape: tape.watch(x) y = math_ops.reduce_euclidean_norm(x) dx = tape.gradient(y, x) dx_answer = constant_op.constant([1.0, -0.0], dtype=dtype) self.assertAllClose(dx, dx_answer) self.assertAllClose(1.0 / dx, 1.0 / dx_answer) def testZeros(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([0.0, -0.0], dtype=dtype) with backprop.GradientTape() as tape: tape.watch(x) y = math_ops.reduce_euclidean_norm(x) dx = tape.gradient(y, x) dx_answer = constant_op.constant( [float("NaN"), float("NaN")], dtype=dtype) self.assertAllClose(dx, dx_answer) def test2D_1(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[-3, 5], [7, 11]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( math_ops.reduce_euclidean_norm, [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 1e-3) def test2D_2(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[-3, 5], [7, 11]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x, 0), [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 1e-3) def test2D_3(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[-3, 5], [7, 11]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x, 1), [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 1e-3) def test2D_4(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[3], [4]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x, 1), [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 1e-3) def test3D_1(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[[-3, 5], [7, 11]], [[13, 17], [19, 23]]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( math_ops.reduce_euclidean_norm, [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 2e-3) def test3D_2(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[[-3, 5], [7, 11]], [[13, 17], [19, 23]]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x, 0), [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 2e-3) def test3D_3(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[[-3, 5], [7, 11]], [[13, 17], [19, 23]]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x, 1), [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 3e-3) def test3D_4(self): for dtype in [dtypes.float32, dtypes.float64]: x = constant_op.constant([[[-3, 5], [7, 11]], [[13, 17], [19, 23]]], dtype=dtype) grads = gradient_checker_v2.compute_gradient( lambda x: math_ops.reduce_euclidean_norm(x, 2), [x]) err = gradient_checker_v2.max_error(*grads) self.assertLess(err, 2e-3) class SegmentMinOrMaxGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testSegmentMinGradient(self): data = constant_op.constant([1.0, 2.0, 3.0], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 1], dtype=dtypes.int64) segment_min = math_ops.segment_min(data, segment_ids) with self.cached_session(): error = gradient_checker.compute_gradient_error(data, [3], segment_min, [2]) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testSegmentMaxGradient(self): data = constant_op.constant([1.0, 2.0, 3.0], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 1], dtype=dtypes.int64) segment_max = math_ops.segment_max(data, segment_ids) with self.cached_session(): error = gradient_checker.compute_gradient_error(data, [3], segment_max, [2]) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testSegmentMinGradientWithTies(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) data = array_ops.concat([inputs, inputs], 0) segment_ids = constant_op.constant([0, 0], dtype=dtypes.int64) segment_min = math_ops.segment_min(data, segment_ids) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [1], segment_min, [1]) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testSegmentMaxGradientWithTies(self): inputs = constant_op.constant([1.0], dtype=dtypes.float32) data = array_ops.concat([inputs, inputs], 0) segment_ids = constant_op.constant([0, 0], dtype=dtypes.int64) segment_max = math_ops.segment_max(data, segment_ids) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [1], segment_max, [1]) self.assertLess(error, 1e-4) @test_util.run_all_in_graph_and_eager_modes class SegmentProdGradientTest(test.TestCase): def _run_gradient_check(self, data, segment_ids): def _segment_prod(x): return math_ops.segment_prod(x, segment_ids) err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient(_segment_prod, [data])) self.assertLess(err, 2e-4) def testSegmentProdGradientWithoutOverlap(self): data = constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1], [5, 6, 7, 8]], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 1, 2], dtype=dtypes.int64) self._run_gradient_check(data, segment_ids) def testSegmentProdGradientWithoutZeros(self): data = constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1], [5, 6, 7, 8]], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 1], dtype=dtypes.int64) self._run_gradient_check(data, segment_ids) def testSegmentProdGradientWithZeros(self): data = constant_op.constant([[0, 2, 3, 4], [0, 0, 2, 0], [5, 0, 7, 0]], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 1], dtype=dtypes.int64) self._run_gradient_check(data, segment_ids) def testSegmentProdGradientWithEmptySegment(self): data = constant_op.constant([[1, 2, 3, 4], [4, 3, 2, 1], [5, 6, 7, 8]], dtype=dtypes.float32) segment_ids = constant_op.constant([0, 0, 2], dtype=dtypes.int64) self._run_gradient_check(data, segment_ids) class FloorModGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testFloorModGradient(self): # Making sure the input is not near the discontinuity point where # x/y == floor(x/y) ns = constant_op.constant([17.], dtype=dtypes.float32) inputs = constant_op.constant([131.], dtype=dtypes.float32) floor_mod = math_ops.floormod(inputs, ns) with self.cached_session(): error = gradient_checker.compute_gradient_error(inputs, [1], floor_mod, [1]) self.assertLess(error, 1e-4) class DivNoNanGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testBasicGradient(self): inputs = constant_op.constant(np.arange(-3, 3), dtype=dtypes.float32) outputs = math_ops.div_no_nan(inputs, 1 + math_ops.abs(inputs)) with self.cached_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testGradientWithDenominatorIsZero(self): x = constant_op.constant(np.arange(-3, 3), dtype=dtypes.float32) y = array_ops.zeros_like(x, dtype=dtypes.float32) outputs = math_ops.div_no_nan(x, y) with self.cached_session(): dx, dy = gradients.gradients(outputs, [x, y]) self.assertAllClose(dx, np.zeros(x.shape.as_list())) self.assertAllClose(dy, np.zeros(y.shape.as_list())) class MulNoNanGradientTest(test.TestCase): @test_util.run_deprecated_v1 def testBasicGradient(self): inputs = constant_op.constant(np.arange(-3, 3), dtype=dtypes.float32) outputs = math_ops.mul_no_nan(inputs, 1 + math_ops.abs(inputs)) with self.cached_session(): error = gradient_checker.compute_gradient_error( inputs, inputs.get_shape().as_list(), outputs, outputs.get_shape().as_list()) self.assertLess(error, 1e-4) @test_util.run_deprecated_v1 def testGradientWithRhsIsZero(self): x_vals = [0, 1.0, np.nan, np.inf, np.NINF] x = constant_op.constant(x_vals, dtype=dtypes.float32) y = array_ops.zeros_like(x, dtype=dtypes.float32) outputs = math_ops.mul_no_nan(x, y) with self.cached_session(): dx, dy = gradients.gradients(outputs, [x, y]) self.assertAllClose(dx, np.zeros(x.shape.as_list())) self.assertAllClose(dy, x_vals) class XlogyTest(test.TestCase): def _xlogy_gradients(self, x, y): xlogy_xgrad = self.evaluate(gradients.gradients(math_ops.xlogy(x, y), x)[0]) xlogy_ygrad = self.evaluate(gradients.gradients(math_ops.xlogy(x, y), y)[0]) return xlogy_xgrad, xlogy_ygrad @test_util.run_deprecated_v1 def testNonZeroValuesGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0.1, dtype=dtype) y = constant_op.constant(3.1, dtype=dtype) xlogy_xgrad, xlogy_ygrad = self._xlogy_gradients(x, y) xlogy_expected_xgrad = self.evaluate(math_ops.log(y)) xlogy_expected_ygrad = self.evaluate(x / y) self.assertAllClose(xlogy_expected_xgrad, xlogy_xgrad) self.assertAllClose(xlogy_expected_ygrad, xlogy_ygrad) @test_util.run_deprecated_v1 def testZeroXGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0., dtype=dtype) y = constant_op.constant(3.1, dtype=dtype) xlogy_xgrad, xlogy_ygrad = self._xlogy_gradients(x, y) zero = self.evaluate(x) self.assertAllClose(zero, xlogy_xgrad) self.assertAllClose(zero, xlogy_ygrad) @test_util.run_deprecated_v1 def testZeroYGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0.1, dtype=dtype) y = constant_op.constant(0., dtype=dtype) xlogy_xgrad, xlogy_ygrad = self._xlogy_gradients(x, y) self.assertAllClose(-np.inf, xlogy_xgrad) self.assertAllClose(np.inf, xlogy_ygrad) @test_util.run_deprecated_v1 def testZeroXYGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0., dtype=dtype) y = constant_op.constant(0., dtype=dtype) xlogy_xgrad, xlogy_ygrad = self._xlogy_gradients(x, y) zero = self.evaluate(x) self.assertAllClose(zero, xlogy_xgrad) self.assertAllClose(zero, xlogy_ygrad) class Xlog1pyTest(test.TestCase): def _xlog1py_gradients(self, x, y): xlog1py_xgrad = self.evaluate( gradients.gradients(math_ops.xlog1py(x, y), x)[0]) xlog1py_ygrad = self.evaluate( gradients.gradients(math_ops.xlog1py(x, y), y)[0]) return xlog1py_xgrad, xlog1py_ygrad @test_util.run_deprecated_v1 def testNonZeroValuesGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0.1, dtype=dtype) y = constant_op.constant(3.1, dtype=dtype) xlog1py_xgrad, xlog1py_ygrad = self._xlog1py_gradients(x, y) xlog1py_expected_xgrad = self.evaluate(math_ops.log1p(y)) xlog1py_expected_ygrad = self.evaluate(x / (1. + y)) self.assertAllClose(xlog1py_expected_xgrad, xlog1py_xgrad) self.assertAllClose(xlog1py_expected_ygrad, xlog1py_ygrad) @test_util.run_deprecated_v1 def testZeroXGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0., dtype=dtype) y = constant_op.constant(3.1, dtype=dtype) xlog1py_xgrad, xlog1py_ygrad = self._xlog1py_gradients(x, y) zero = self.evaluate(x) self.assertAllClose(zero, xlog1py_xgrad) self.assertAllClose(zero, xlog1py_ygrad) @test_util.run_deprecated_v1 def testNegOneYGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0.1, dtype=dtype) y = constant_op.constant(-1., dtype=dtype) xlog1py_xgrad, xlog1py_ygrad = self._xlog1py_gradients(x, y) self.assertAllClose(-np.inf, xlog1py_xgrad) self.assertAllClose(np.inf, xlog1py_ygrad) @test_util.run_deprecated_v1 def testZeroXNegOneYGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0., dtype=dtype) y = constant_op.constant(-1., dtype=dtype) xlog1py_xgrad, xlog1py_ygrad = self._xlog1py_gradients(x, y) zero = self.evaluate(x) self.assertAllClose(zero, xlog1py_xgrad) self.assertAllClose(zero, xlog1py_ygrad) class XdivyTest(test.TestCase): def _xdivy_gradients(self, x, y): xdivy_xgrad = self.evaluate(gradients.gradients(math_ops.xdivy(x, y), x)[0]) xdivy_ygrad = self.evaluate(gradients.gradients(math_ops.xdivy(x, y), y)[0]) return xdivy_xgrad, xdivy_ygrad @test_util.run_deprecated_v1 def testNonZeroValuesGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0.1, dtype=dtype) y = constant_op.constant(3.1, dtype=dtype) xdivy_xgrad, xdivy_ygrad = self._xdivy_gradients(x, y) xdivy_expected_xgrad = self.evaluate(1 / y) xdivy_expected_ygrad = self.evaluate(-x / y**2) self.assertAllClose(xdivy_expected_xgrad, xdivy_xgrad) self.assertAllClose(xdivy_expected_ygrad, xdivy_ygrad) @test_util.run_deprecated_v1 def testZeroXGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0., dtype=dtype) y = constant_op.constant(3.1, dtype=dtype) xdivy_xgrad, xdivy_ygrad = self._xdivy_gradients(x, y) zero = self.evaluate(x) self.assertAllClose(zero, xdivy_xgrad) self.assertAllClose(zero, xdivy_ygrad) @test_util.run_deprecated_v1 def testZeroYGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0.1, dtype=dtype) y = constant_op.constant(0., dtype=dtype) xdivy_xgrad, xdivy_ygrad = self._xdivy_gradients(x, y) self.assertAllClose(np.inf, xdivy_xgrad) self.assertAllClose(-np.inf, xdivy_ygrad) @test_util.run_deprecated_v1 def testZeroXYGrad(self): for dtype in [dtypes.float16, dtypes.float32, dtypes.float64]: x = constant_op.constant(0., dtype=dtype) y = constant_op.constant(0., dtype=dtype) xdivy_xgrad, xdivy_ygrad = self._xdivy_gradients(x, y) zero = self.evaluate(x) self.assertAllClose(zero, xdivy_xgrad) self.assertAllClose(zero, xdivy_ygrad) @test_util.run_all_in_graph_and_eager_modes class PowGradTest(test.TestCase): def test_zero_grad_tf_gradients(self): if context.executing_eagerly(): self.skipTest("tf.gradients not supported in eager.") x = constant_op.constant([-1., 0., 1.]) g = self.evaluate(gradients.gradients(math_ops.pow(x, 2), x)[0]) self.assertAllClose([-2., 0., 2.], g) def test_zero_grad_tape(self): try: check_numerics_callback.enable_check_numerics() x = constant_op.constant([-1, 0., 1.]) with backprop.GradientTape() as tape: tape.watch(x) g = tape.gradient(math_ops.pow(x, 2), x) g = self.evaluate(g) self.assertAllClose([-2., 0., 2.], g) finally: check_numerics_callback.disable_check_numerics() @test_util.run_all_in_graph_and_eager_modes class NextAfterTest(test.TestCase): def _nextafter_gradient(self, x1, x2): with backprop.GradientTape() as tape: tape.watch(x1) tape.watch(x2) y = math_ops.nextafter(x1, x2) return tape.gradient(y, [x1, x2]) def testBasic(self): for dtype in [dtypes.float32, dtypes.float64]: x1 = constant_op.constant(0.1, dtype=dtype) x2 = constant_op.constant(3.1, dtype=dtype) dx1, dx2 = self._nextafter_gradient(x1, x2) expected_dx1 = constant_op.constant(1, dtype=dtype) expected_dx2 = constant_op.constant(0, dtype=dtype) self.assertAllClose(expected_dx1, dx1) self.assertAllClose(expected_dx2, dx2) def testDynamicShapes(self): for dtype in [dtypes.float32, dtypes.float64]: default_x1 = constant_op.constant(0.1, dtype=dtype) default_x2 = constant_op.constant(3.1, dtype=dtype) x1 = array_ops.placeholder_with_default(default_x1, shape=None) x2 = array_ops.placeholder_with_default(default_x2, shape=None) dx1, dx2 = self._nextafter_gradient(x1, x2) expected_dx1 = constant_op.constant(1, dtype=dtype) expected_dx2 = constant_op.constant(0, dtype=dtype) self.assertAllClose(expected_dx1, dx1) self.assertAllClose(expected_dx2, dx2) def testWithGradientChecker(self): for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session(): x1 = np.array([-1, 0, 1, 2, 3], dtype=dtype.as_numpy_dtype) x2 = np.array([2, 2, 2, 2, 2], dtype=dtype.as_numpy_dtype) err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient( lambda x: math_ops.nextafter(x, x2), [x1])) # pylint: disable=cell-var-from-loop self.assertLess(err, 1e-3) def testBroadcastingWithGradientChecker(self): for dtype in [dtypes.float32, dtypes.float64]: with self.cached_session(): x1 = np.array([-1, 0, 1, 2, 3], dtype=dtype.as_numpy_dtype) x2 = np.array([2], dtype=dtype.as_numpy_dtype) err = gradient_checker_v2.max_error( *gradient_checker_v2.compute_gradient( lambda x: math_ops.nextafter(x, x2), [x1])) # pylint: disable=cell-var-from-loop self.assertLess(err, 1e-3) if __name__ == "__main__": test.main()