# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""configure script to get build parameters from user."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import errno
import glob
import os
import platform
import re
import subprocess
import sys

# pylint: disable=g-import-not-at-top
try:
  from shutil import which
except ImportError:
  from distutils.spawn import find_executable as which
# pylint: enable=g-import-not-at-top

_DEFAULT_CUDA_VERSION = '10'
_DEFAULT_CUDNN_VERSION = '7'
_DEFAULT_TENSORRT_VERSION = '6'
_DEFAULT_CUDA_COMPUTE_CAPABILITIES = '3.5,7.0'

_SUPPORTED_ANDROID_NDK_VERSIONS = [10, 11, 12, 13, 14, 15, 16, 17, 18]

_DEFAULT_PROMPT_ASK_ATTEMPTS = 10

_TF_BAZELRC_FILENAME = '.tf_configure.bazelrc'
_TF_WORKSPACE_ROOT = ''
_TF_BAZELRC = ''
_TF_CURRENT_BAZEL_VERSION = None
_TF_MIN_BAZEL_VERSION = '3.7.2'
_TF_MAX_BAZEL_VERSION = '3.99.0'

NCCL_LIB_PATHS = [
    'lib64/', 'lib/powerpc64le-linux-gnu/', 'lib/x86_64-linux-gnu/', ''
]

# List of files to configure when building Bazel on Apple platforms.
APPLE_BAZEL_FILES = [
    'tensorflow/lite/ios/BUILD', 'tensorflow/lite/objc/BUILD',
    'tensorflow/lite/swift/BUILD',
    'tensorflow/lite/tools/benchmark/experimental/ios/BUILD'
]

# List of files to move when building for iOS.
IOS_FILES = [
    'tensorflow/lite/objc/TensorFlowLiteObjC.podspec',
    'tensorflow/lite/swift/TensorFlowLiteSwift.podspec',
]


class UserInputError(Exception):
  pass


def is_windows():
  return platform.system() == 'Windows'


def is_linux():
  return platform.system() == 'Linux'


def is_macos():
  return platform.system() == 'Darwin'


def is_ppc64le():
  return platform.machine() == 'ppc64le'


def is_cygwin():
  return platform.system().startswith('CYGWIN_NT')


def get_input(question):
  try:
    try:
      answer = raw_input(question)
    except NameError:
      answer = input(question)  # pylint: disable=bad-builtin
  except EOFError:
    answer = ''
  return answer


def symlink_force(target, link_name):
  """Force symlink, equivalent of 'ln -sf'.

  Args:
    target: items to link to.
    link_name: name of the link.
  """
  try:
    os.symlink(target, link_name)
  except OSError as e:
    if e.errno == errno.EEXIST:
      os.remove(link_name)
      os.symlink(target, link_name)
    else:
      raise e


def sed_in_place(filename, old, new):
  """Replace old string with new string in file.

  Args:
    filename: string for filename.
    old: string to replace.
    new: new string to replace to.
  """
  with open(filename, 'r') as f:
    filedata = f.read()
  newdata = filedata.replace(old, new)
  with open(filename, 'w') as f:
    f.write(newdata)


def write_to_bazelrc(line):
  with open(_TF_BAZELRC, 'a') as f:
    f.write(line + '\n')


def write_action_env_to_bazelrc(var_name, var):
  write_to_bazelrc('build --action_env {}="{}"'.format(var_name, str(var)))


def run_shell(cmd, allow_non_zero=False, stderr=None):
  if stderr is None:
    stderr = sys.stdout
  if allow_non_zero:
    try:
      output = subprocess.check_output(cmd, stderr=stderr)
    except subprocess.CalledProcessError as e:
      output = e.output
  else:
    output = subprocess.check_output(cmd, stderr=stderr)
  return output.decode('UTF-8').strip()


def cygpath(path):
  """Convert path from posix to windows."""
  return os.path.abspath(path).replace('\\', '/')


def get_python_path(environ_cp, python_bin_path):
  """Get the python site package paths."""
  python_paths = []
  if environ_cp.get('PYTHONPATH'):
    python_paths = environ_cp.get('PYTHONPATH').split(':')
  try:
    stderr = open(os.devnull, 'wb')
    library_paths = run_shell([
        python_bin_path, '-c',
        'import site; print("\\n".join(site.getsitepackages()))'
    ],
                              stderr=stderr).split('\n')
  except subprocess.CalledProcessError:
    library_paths = [
        run_shell([
            python_bin_path, '-c',
            'from distutils.sysconfig import get_python_lib;'
            'print(get_python_lib())'
        ])
    ]

  all_paths = set(python_paths + library_paths)
  # Sort set so order is deterministic
  all_paths = sorted(all_paths)

  paths = []
  for path in all_paths:
    if os.path.isdir(path):
      paths.append(path)
  return paths


def get_python_major_version(python_bin_path):
  """Get the python major version."""
  return run_shell([python_bin_path, '-c', 'import sys; print(sys.version[0])'])


def setup_python(environ_cp):
  """Setup python related env variables."""
  # Get PYTHON_BIN_PATH, default is the current running python.
  default_python_bin_path = sys.executable
  ask_python_bin_path = ('Please specify the location of python. [Default is '
                         '{}]: ').format(default_python_bin_path)
  while True:
    python_bin_path = get_from_env_or_user_or_default(environ_cp,
                                                      'PYTHON_BIN_PATH',
                                                      ask_python_bin_path,
                                                      default_python_bin_path)
    # Check if the path is valid
    if os.path.isfile(python_bin_path) and os.access(python_bin_path, os.X_OK):
      break
    elif not os.path.exists(python_bin_path):
      print('Invalid python path: {} cannot be found.'.format(python_bin_path))
    else:
      print('{} is not executable.  Is it the python binary?'.format(
          python_bin_path))
    environ_cp['PYTHON_BIN_PATH'] = ''

  # Convert python path to Windows style before checking lib and version
  if is_windows() or is_cygwin():
    python_bin_path = cygpath(python_bin_path)

  # Get PYTHON_LIB_PATH
  python_lib_path = environ_cp.get('PYTHON_LIB_PATH')
  if not python_lib_path:
    python_lib_paths = get_python_path(environ_cp, python_bin_path)
    if environ_cp.get('USE_DEFAULT_PYTHON_LIB_PATH') == '1':
      python_lib_path = python_lib_paths[0]
    else:
      print('Found possible Python library paths:\n  %s' %
            '\n  '.join(python_lib_paths))
      default_python_lib_path = python_lib_paths[0]
      python_lib_path = get_input(
          'Please input the desired Python library path to use.  '
          'Default is [{}]\n'.format(python_lib_paths[0]))
      if not python_lib_path:
        python_lib_path = default_python_lib_path
    environ_cp['PYTHON_LIB_PATH'] = python_lib_path

  python_major_version = get_python_major_version(python_bin_path)
  if python_major_version == '2':
    write_to_bazelrc('build --host_force_python=PY2')

  # Convert python path to Windows style before writing into bazel.rc
  if is_windows() or is_cygwin():
    python_lib_path = cygpath(python_lib_path)

  # Set-up env variables used by python_configure.bzl
  write_action_env_to_bazelrc('PYTHON_BIN_PATH', python_bin_path)
  write_action_env_to_bazelrc('PYTHON_LIB_PATH', python_lib_path)
  write_to_bazelrc('build --python_path=\"{}"'.format(python_bin_path))
  environ_cp['PYTHON_BIN_PATH'] = python_bin_path

  # If choosen python_lib_path is from a path specified in the PYTHONPATH
  # variable, need to tell bazel to include PYTHONPATH
  if environ_cp.get('PYTHONPATH'):
    python_paths = environ_cp.get('PYTHONPATH').split(':')
    if python_lib_path in python_paths:
      write_action_env_to_bazelrc('PYTHONPATH', environ_cp.get('PYTHONPATH'))

  # Write tools/python_bin_path.sh
  with open(
      os.path.join(_TF_WORKSPACE_ROOT, 'tools', 'python_bin_path.sh'),
      'w') as f:
    f.write('export PYTHON_BIN_PATH="{}"'.format(python_bin_path))


def reset_tf_configure_bazelrc():
  """Reset file that contains customized config settings."""
  open(_TF_BAZELRC, 'w').close()


def cleanup_makefile():
  """Delete any leftover BUILD files from the Makefile build.

  These files could interfere with Bazel parsing.
  """
  makefile_download_dir = os.path.join(_TF_WORKSPACE_ROOT, 'tensorflow',
                                       'contrib', 'makefile', 'downloads')
  if os.path.isdir(makefile_download_dir):
    for root, _, filenames in os.walk(makefile_download_dir):
      for f in filenames:
        if f.endswith('BUILD'):
          os.remove(os.path.join(root, f))


def get_var(environ_cp,
            var_name,
            query_item,
            enabled_by_default,
            question=None,
            yes_reply=None,
            no_reply=None):
  """Get boolean input from user.

  If var_name is not set in env, ask user to enable query_item or not. If the
  response is empty, use the default.

  Args:
    environ_cp: copy of the os.environ.
    var_name: string for name of environment variable, e.g. "TF_NEED_CUDA".
    query_item: string for feature related to the variable, e.g. "CUDA for
      Nvidia GPUs".
    enabled_by_default: boolean for default behavior.
    question: optional string for how to ask for user input.
    yes_reply: optional string for reply when feature is enabled.
    no_reply: optional string for reply when feature is disabled.

  Returns:
    boolean value of the variable.

  Raises:
    UserInputError: if an environment variable is set, but it cannot be
      interpreted as a boolean indicator, assume that the user has made a
      scripting error, and will continue to provide invalid input.
      Raise the error to avoid infinitely looping.
  """
  if not question:
    question = 'Do you wish to build TensorFlow with {} support?'.format(
        query_item)
  if not yes_reply:
    yes_reply = '{} support will be enabled for TensorFlow.'.format(query_item)
  if not no_reply:
    no_reply = 'No {}'.format(yes_reply)

  yes_reply += '\n'
  no_reply += '\n'

  if enabled_by_default:
    question += ' [Y/n]: '
  else:
    question += ' [y/N]: '

  var = environ_cp.get(var_name)
  if var is not None:
    var_content = var.strip().lower()
    true_strings = ('1', 't', 'true', 'y', 'yes')
    false_strings = ('0', 'f', 'false', 'n', 'no')
    if var_content in true_strings:
      var = True
    elif var_content in false_strings:
      var = False
    else:
      raise UserInputError(
          'Environment variable %s must be set as a boolean indicator.\n'
          'The following are accepted as TRUE : %s.\n'
          'The following are accepted as FALSE: %s.\n'
          'Current value is %s.' %
          (var_name, ', '.join(true_strings), ', '.join(false_strings), var))

  while var is None:
    user_input_origin = get_input(question)
    user_input = user_input_origin.strip().lower()
    if user_input == 'y':
      print(yes_reply)
      var = True
    elif user_input == 'n':
      print(no_reply)
      var = False
    elif not user_input:
      if enabled_by_default:
        print(yes_reply)
        var = True
      else:
        print(no_reply)
        var = False
    else:
      print('Invalid selection: {}'.format(user_input_origin))
  return var


def set_build_var(environ_cp,
                  var_name,
                  query_item,
                  option_name,
                  enabled_by_default,
                  bazel_config_name=None):
  """Set if query_item will be enabled for the build.

  Ask user if query_item will be enabled. Default is used if no input is given.
  Set subprocess environment variable and write to .bazelrc if enabled.

  Args:
    environ_cp: copy of the os.environ.
    var_name: string for name of environment variable, e.g. "TF_NEED_CUDA".
    query_item: string for feature related to the variable, e.g. "CUDA for
      Nvidia GPUs".
    option_name: string for option to define in .bazelrc.
    enabled_by_default: boolean for default behavior.
    bazel_config_name: Name for Bazel --config argument to enable build feature.
  """

  var = str(int(get_var(environ_cp, var_name, query_item, enabled_by_default)))
  environ_cp[var_name] = var
  if var == '1':
    write_to_bazelrc('build:%s --define %s=true' %
                     (bazel_config_name, option_name))
    write_to_bazelrc('build --config=%s' % bazel_config_name)
  elif bazel_config_name is not None:
    # TODO(mikecase): Migrate all users of configure.py to use --config Bazel
    # options and not to set build configs through environment variables.
    write_to_bazelrc('build:%s --define %s=true' %
                     (bazel_config_name, option_name))


def set_action_env_var(environ_cp,
                       var_name,
                       query_item,
                       enabled_by_default,
                       question=None,
                       yes_reply=None,
                       no_reply=None,
                       bazel_config_name=None):
  """Set boolean action_env variable.

  Ask user if query_item will be enabled. Default is used if no input is given.
  Set environment variable and write to .bazelrc.

  Args:
    environ_cp: copy of the os.environ.
    var_name: string for name of environment variable, e.g. "TF_NEED_CUDA".
    query_item: string for feature related to the variable, e.g. "CUDA for
      Nvidia GPUs".
    enabled_by_default: boolean for default behavior.
    question: optional string for how to ask for user input.
    yes_reply: optional string for reply when feature is enabled.
    no_reply: optional string for reply when feature is disabled.
    bazel_config_name: adding config to .bazelrc instead of action_env.
  """
  var = int(
      get_var(environ_cp, var_name, query_item, enabled_by_default, question,
              yes_reply, no_reply))

  if not bazel_config_name:
    write_action_env_to_bazelrc(var_name, var)
  elif var:
    write_to_bazelrc('build --config=%s' % bazel_config_name)
  environ_cp[var_name] = str(var)


def convert_version_to_int(version):
  """Convert a version number to a integer that can be used to compare.

  Version strings of the form X.YZ and X.Y.Z-xxxxx are supported. The
  'xxxxx' part, for instance 'homebrew' on OS/X, is ignored.

  Args:
    version: a version to be converted

  Returns:
    An integer if converted successfully, otherwise return None.
  """
  version = version.split('-')[0]
  version_segments = version.split('.')
  # Treat "0.24" as "0.24.0"
  if len(version_segments) == 2:
    version_segments.append('0')
  for seg in version_segments:
    if not seg.isdigit():
      return None

  version_str = ''.join(['%03d' % int(seg) for seg in version_segments])
  return int(version_str)


def check_bazel_version(min_version, max_version):
  """Check installed bazel version is between min_version and max_version.

  Args:
    min_version: string for minimum bazel version (must exist!).
    max_version: string for maximum bazel version (must exist!).

  Returns:
    The bazel version detected.
  """
  if which('bazel') is None:
    print('Cannot find bazel. Please install bazel.')
    sys.exit(1)

  stderr = open(os.devnull, 'wb')
  curr_version = run_shell(['bazel', '--version'],
                           allow_non_zero=True,
                           stderr=stderr)
  if curr_version.startswith('bazel '):
    curr_version = curr_version.split('bazel ')[1]

  min_version_int = convert_version_to_int(min_version)
  curr_version_int = convert_version_to_int(curr_version)
  max_version_int = convert_version_to_int(max_version)

  # Check if current bazel version can be detected properly.
  if not curr_version_int:
    print('WARNING: current bazel installation is not a release version.')
    print('Make sure you are running at least bazel %s' % min_version)
    return curr_version

  print('You have bazel %s installed.' % curr_version)

  if curr_version_int < min_version_int:
    print('Please upgrade your bazel installation to version %s or higher to '
          'build TensorFlow!' % min_version)
    sys.exit(1)
  if (curr_version_int > max_version_int and
      'TF_IGNORE_MAX_BAZEL_VERSION' not in os.environ):
    print('Please downgrade your bazel installation to version %s or lower to '
          'build TensorFlow! To downgrade: download the installer for the old '
          'version (from https://github.com/bazelbuild/bazel/releases) then '
          'run the installer.' % max_version)
    sys.exit(1)
  return curr_version


def set_cc_opt_flags(environ_cp):
  """Set up architecture-dependent optimization flags.

  Also append CC optimization flags to bazel.rc..

  Args:
    environ_cp: copy of the os.environ.
  """
  if is_ppc64le():
    # gcc on ppc64le does not support -march, use mcpu instead
    default_cc_opt_flags = '-mcpu=native'
  elif is_windows():
    default_cc_opt_flags = '/arch:AVX'
  else:
    # On all other platforms, no longer use `-march=native` as this can result
    # in instructions that are too modern being generated. Users that want
    # maximum performance should compile TF in their environment and can pass
    # `-march=native` there.
    # See https://github.com/tensorflow/tensorflow/issues/45744 and duplicates
    default_cc_opt_flags = '-Wno-sign-compare'
  question = ('Please specify optimization flags to use during compilation when'
              ' bazel option "--config=opt" is specified [Default is %s]: '
             ) % default_cc_opt_flags
  cc_opt_flags = get_from_env_or_user_or_default(environ_cp, 'CC_OPT_FLAGS',
                                                 question, default_cc_opt_flags)
  for opt in cc_opt_flags.split():
    write_to_bazelrc('build:opt --copt=%s' % opt)
    write_to_bazelrc('build:opt --host_copt=%s' % opt)
  write_to_bazelrc('build:opt --define with_default_optimizations=true')


def set_tf_cuda_clang(environ_cp):
  """set TF_CUDA_CLANG action_env.

  Args:
    environ_cp: copy of the os.environ.
  """
  question = 'Do you want to use clang as CUDA compiler?'
  yes_reply = 'Clang will be used as CUDA compiler.'
  no_reply = 'nvcc will be used as CUDA compiler.'
  set_action_env_var(
      environ_cp,
      'TF_CUDA_CLANG',
      None,
      False,
      question=question,
      yes_reply=yes_reply,
      no_reply=no_reply,
      bazel_config_name='cuda_clang')


def set_tf_download_clang(environ_cp):
  """Set TF_DOWNLOAD_CLANG action_env."""
  question = 'Do you wish to download a fresh release of clang? (Experimental)'
  yes_reply = 'Clang will be downloaded and used to compile tensorflow.'
  no_reply = 'Clang will not be downloaded.'
  set_action_env_var(
      environ_cp,
      'TF_DOWNLOAD_CLANG',
      None,
      False,
      question=question,
      yes_reply=yes_reply,
      no_reply=no_reply,
      bazel_config_name='download_clang')


def get_from_env_or_user_or_default(environ_cp, var_name, ask_for_var,
                                    var_default):
  """Get var_name either from env, or user or default.

  If var_name has been set as environment variable, use the preset value, else
  ask for user input. If no input is provided, the default is used.

  Args:
    environ_cp: copy of the os.environ.
    var_name: string for name of environment variable, e.g. "TF_NEED_CUDA".
    ask_for_var: string for how to ask for user input.
    var_default: default value string.

  Returns:
    string value for var_name
  """
  var = environ_cp.get(var_name)
  if not var:
    var = get_input(ask_for_var)
    print('\n')
  if not var:
    var = var_default
  return var


def set_clang_cuda_compiler_path(environ_cp):
  """Set CLANG_CUDA_COMPILER_PATH."""
  default_clang_path = which('clang') or ''
  ask_clang_path = ('Please specify which clang should be used as device and '
                    'host compiler. [Default is %s]: ') % default_clang_path

  while True:
    clang_cuda_compiler_path = get_from_env_or_user_or_default(
        environ_cp, 'CLANG_CUDA_COMPILER_PATH', ask_clang_path,
        default_clang_path)
    if os.path.exists(clang_cuda_compiler_path):
      break

    # Reset and retry
    print('Invalid clang path: %s cannot be found.' % clang_cuda_compiler_path)
    environ_cp['CLANG_CUDA_COMPILER_PATH'] = ''

  # Set CLANG_CUDA_COMPILER_PATH
  environ_cp['CLANG_CUDA_COMPILER_PATH'] = clang_cuda_compiler_path
  write_action_env_to_bazelrc('CLANG_CUDA_COMPILER_PATH',
                              clang_cuda_compiler_path)


def prompt_loop_or_load_from_env(environ_cp,
                                 var_name,
                                 var_default,
                                 ask_for_var,
                                 check_success,
                                 error_msg,
                                 suppress_default_error=False,
                                 resolve_symlinks=False,
                                 n_ask_attempts=_DEFAULT_PROMPT_ASK_ATTEMPTS):
  """Loop over user prompts for an ENV param until receiving a valid response.

  For the env param var_name, read from the environment or verify user input
  until receiving valid input. When done, set var_name in the environ_cp to its
  new value.

  Args:
    environ_cp: (Dict) copy of the os.environ.
    var_name: (String) string for name of environment variable, e.g. "TF_MYVAR".
    var_default: (String) default value string.
    ask_for_var: (String) string for how to ask for user input.
    check_success: (Function) function that takes one argument and returns a
      boolean. Should return True if the value provided is considered valid. May
      contain a complex error message if error_msg does not provide enough
      information. In that case, set suppress_default_error to True.
    error_msg: (String) String with one and only one '%s'. Formatted with each
      invalid response upon check_success(input) failure.
    suppress_default_error: (Bool) Suppress the above error message in favor of
      one from the check_success function.
    resolve_symlinks: (Bool) Translate symbolic links into the real filepath.
    n_ask_attempts: (Integer) Number of times to query for valid input before
      raising an error and quitting.

  Returns:
    [String] The value of var_name after querying for input.

  Raises:
    UserInputError: if a query has been attempted n_ask_attempts times without
      success, assume that the user has made a scripting error, and will
      continue to provide invalid input. Raise the error to avoid infinitely
      looping.
  """
  default = environ_cp.get(var_name) or var_default
  full_query = '%s [Default is %s]: ' % (
      ask_for_var,
      default,
  )

  for _ in range(n_ask_attempts):
    val = get_from_env_or_user_or_default(environ_cp, var_name, full_query,
                                          default)
    if check_success(val):
      break
    if not suppress_default_error:
      print(error_msg % val)
    environ_cp[var_name] = ''
  else:
    raise UserInputError('Invalid %s setting was provided %d times in a row. '
                         'Assuming to be a scripting mistake.' %
                         (var_name, n_ask_attempts))

  if resolve_symlinks and os.path.islink(val):
    val = os.path.realpath(val)
  environ_cp[var_name] = val
  return val


def create_android_ndk_rule(environ_cp):
  """Set ANDROID_NDK_HOME and write Android NDK WORKSPACE rule."""
  if is_windows() or is_cygwin():
    default_ndk_path = cygpath('%s/Android/Sdk/ndk-bundle' %
                               environ_cp['APPDATA'])
  elif is_macos():
    default_ndk_path = '%s/library/Android/Sdk/ndk-bundle' % environ_cp['HOME']
  else:
    default_ndk_path = '%s/Android/Sdk/ndk-bundle' % environ_cp['HOME']

  def valid_ndk_path(path):
    return (os.path.exists(path) and
            os.path.exists(os.path.join(path, 'source.properties')))

  android_ndk_home_path = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='ANDROID_NDK_HOME',
      var_default=default_ndk_path,
      ask_for_var='Please specify the home path of the Android NDK to use.',
      check_success=valid_ndk_path,
      error_msg=('The path %s or its child file "source.properties" '
                 'does not exist.'))
  write_action_env_to_bazelrc('ANDROID_NDK_HOME', android_ndk_home_path)
  write_action_env_to_bazelrc(
      'ANDROID_NDK_API_LEVEL',
      get_ndk_api_level(environ_cp, android_ndk_home_path))


def create_android_sdk_rule(environ_cp):
  """Set Android variables and write Android SDK WORKSPACE rule."""
  if is_windows() or is_cygwin():
    default_sdk_path = cygpath('%s/Android/Sdk' % environ_cp['APPDATA'])
  elif is_macos():
    default_sdk_path = '%s/library/Android/Sdk' % environ_cp['HOME']
  else:
    default_sdk_path = '%s/Android/Sdk' % environ_cp['HOME']

  def valid_sdk_path(path):
    return (os.path.exists(path) and
            os.path.exists(os.path.join(path, 'platforms')) and
            os.path.exists(os.path.join(path, 'build-tools')))

  android_sdk_home_path = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='ANDROID_SDK_HOME',
      var_default=default_sdk_path,
      ask_for_var='Please specify the home path of the Android SDK to use.',
      check_success=valid_sdk_path,
      error_msg=('Either %s does not exist, or it does not contain the '
                 'subdirectories "platforms" and "build-tools".'))

  platforms = os.path.join(android_sdk_home_path, 'platforms')
  api_levels = sorted(os.listdir(platforms))
  api_levels = [x.replace('android-', '') for x in api_levels]

  def valid_api_level(api_level):
    return os.path.exists(
        os.path.join(android_sdk_home_path, 'platforms',
                     'android-' + api_level))

  android_api_level = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='ANDROID_API_LEVEL',
      var_default=api_levels[-1],
      ask_for_var=('Please specify the Android SDK API level to use. '
                   '[Available levels: %s]') % api_levels,
      check_success=valid_api_level,
      error_msg='Android-%s is not present in the SDK path.')

  build_tools = os.path.join(android_sdk_home_path, 'build-tools')
  versions = sorted(os.listdir(build_tools))

  def valid_build_tools(version):
    return os.path.exists(
        os.path.join(android_sdk_home_path, 'build-tools', version))

  android_build_tools_version = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='ANDROID_BUILD_TOOLS_VERSION',
      var_default=versions[-1],
      ask_for_var=('Please specify an Android build tools version to use. '
                   '[Available versions: %s]') % versions,
      check_success=valid_build_tools,
      error_msg=('The selected SDK does not have build-tools version %s '
                 'available.'))

  write_action_env_to_bazelrc('ANDROID_BUILD_TOOLS_VERSION',
                              android_build_tools_version)
  write_action_env_to_bazelrc('ANDROID_SDK_API_LEVEL', android_api_level)
  write_action_env_to_bazelrc('ANDROID_SDK_HOME', android_sdk_home_path)


def get_ndk_api_level(environ_cp, android_ndk_home_path):
  """Gets the appropriate NDK API level to use for the provided Android NDK path."""

  # First check to see if we're using a blessed version of the NDK.
  properties_path = '%s/source.properties' % android_ndk_home_path
  if is_windows() or is_cygwin():
    properties_path = cygpath(properties_path)
  with open(properties_path, 'r') as f:
    filedata = f.read()

  revision = re.search(r'Pkg.Revision = (\d+)', filedata)
  if revision:
    ndk_version = revision.group(1)
  else:
    raise Exception('Unable to parse NDK revision.')
  if int(ndk_version) not in _SUPPORTED_ANDROID_NDK_VERSIONS:
    print('WARNING: The NDK version in %s is %s, which is not '
          'supported by Bazel (officially supported versions: %s). Please use '
          'another version. Compiling Android targets may result in confusing '
          'errors.\n' %
          (android_ndk_home_path, ndk_version, _SUPPORTED_ANDROID_NDK_VERSIONS))

  # Now grab the NDK API level to use. Note that this is different from the
  # SDK API level, as the NDK API level is effectively the *min* target SDK
  # version.
  platforms = os.path.join(android_ndk_home_path, 'platforms')
  api_levels = sorted(os.listdir(platforms))
  api_levels = [
      x.replace('android-', '') for x in api_levels if 'android-' in x
  ]

  def valid_api_level(api_level):
    return os.path.exists(
        os.path.join(android_ndk_home_path, 'platforms',
                     'android-' + api_level))

  android_ndk_api_level = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='ANDROID_NDK_API_LEVEL',
      var_default='21',  # 21 is required for ARM64 support.
      ask_for_var=('Please specify the (min) Android NDK API level to use. '
                   '[Available levels: %s]') % api_levels,
      check_success=valid_api_level,
      error_msg='Android-%s is not present in the NDK path.')

  return android_ndk_api_level


def set_gcc_host_compiler_path(environ_cp):
  """Set GCC_HOST_COMPILER_PATH."""
  default_gcc_host_compiler_path = which('gcc') or ''
  cuda_bin_symlink = '%s/bin/gcc' % environ_cp.get('CUDA_TOOLKIT_PATH')

  if os.path.islink(cuda_bin_symlink):
    # os.readlink is only available in linux
    default_gcc_host_compiler_path = os.path.realpath(cuda_bin_symlink)

  gcc_host_compiler_path = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='GCC_HOST_COMPILER_PATH',
      var_default=default_gcc_host_compiler_path,
      ask_for_var='Please specify which gcc should be used by nvcc as the host compiler.',
      check_success=os.path.exists,
      resolve_symlinks=True,
      error_msg='Invalid gcc path. %s cannot be found.',
  )

  write_action_env_to_bazelrc('GCC_HOST_COMPILER_PATH', gcc_host_compiler_path)


def reformat_version_sequence(version_str, sequence_count):
  """Reformat the version string to have the given number of sequences.

  For example:
  Given (7, 2) -> 7.0
        (7.0.1, 2) -> 7.0
        (5, 1) -> 5
        (5.0.3.2, 1) -> 5

  Args:
      version_str: String, the version string.
      sequence_count: int, an integer.

  Returns:
      string, reformatted version string.
  """
  v = version_str.split('.')
  if len(v) < sequence_count:
    v = v + (['0'] * (sequence_count - len(v)))

  return '.'.join(v[:sequence_count])


def set_tf_cuda_paths(environ_cp):
  """Set TF_CUDA_PATHS."""
  ask_cuda_paths = (
      'Please specify the comma-separated list of base paths to look for CUDA '
      'libraries and headers. [Leave empty to use the default]: ')
  tf_cuda_paths = get_from_env_or_user_or_default(environ_cp, 'TF_CUDA_PATHS',
                                                  ask_cuda_paths, '')
  if tf_cuda_paths:
    environ_cp['TF_CUDA_PATHS'] = tf_cuda_paths


def set_tf_cuda_version(environ_cp):
  """Set TF_CUDA_VERSION."""
  ask_cuda_version = (
      'Please specify the CUDA SDK version you want to use. '
      '[Leave empty to default to CUDA %s]: ') % _DEFAULT_CUDA_VERSION
  tf_cuda_version = get_from_env_or_user_or_default(environ_cp,
                                                    'TF_CUDA_VERSION',
                                                    ask_cuda_version,
                                                    _DEFAULT_CUDA_VERSION)
  environ_cp['TF_CUDA_VERSION'] = tf_cuda_version


def set_tf_cudnn_version(environ_cp):
  """Set TF_CUDNN_VERSION."""
  ask_cudnn_version = (
      'Please specify the cuDNN version you want to use. '
      '[Leave empty to default to cuDNN %s]: ') % _DEFAULT_CUDNN_VERSION
  tf_cudnn_version = get_from_env_or_user_or_default(environ_cp,
                                                     'TF_CUDNN_VERSION',
                                                     ask_cudnn_version,
                                                     _DEFAULT_CUDNN_VERSION)
  environ_cp['TF_CUDNN_VERSION'] = tf_cudnn_version


def is_cuda_compatible(lib, cuda_ver, cudnn_ver):
  """Check compatibility between given library and cudnn/cudart libraries."""
  ldd_bin = which('ldd') or '/usr/bin/ldd'
  ldd_out = run_shell([ldd_bin, lib], True)
  ldd_out = ldd_out.split(os.linesep)
  cudnn_pattern = re.compile('.*libcudnn.so\\.?(.*) =>.*$')
  cuda_pattern = re.compile('.*libcudart.so\\.?(.*) =>.*$')
  cudnn = None
  cudart = None
  cudnn_ok = True  # assume no cudnn dependency by default
  cuda_ok = True  # assume no cuda dependency by default
  for line in ldd_out:
    if 'libcudnn.so' in line:
      cudnn = cudnn_pattern.search(line)
      cudnn_ok = False
    elif 'libcudart.so' in line:
      cudart = cuda_pattern.search(line)
      cuda_ok = False
  if cudnn and len(cudnn.group(1)):
    cudnn = convert_version_to_int(cudnn.group(1))
  if cudart and len(cudart.group(1)):
    cudart = convert_version_to_int(cudart.group(1))
  if cudnn is not None:
    cudnn_ok = (cudnn == cudnn_ver)
  if cudart is not None:
    cuda_ok = (cudart == cuda_ver)
  return cudnn_ok and cuda_ok


def set_tf_tensorrt_version(environ_cp):
  """Set TF_TENSORRT_VERSION."""
  if not is_linux():
    raise ValueError('Currently TensorRT is only supported on Linux platform.')

  if not int(environ_cp.get('TF_NEED_TENSORRT', False)):
    return

  ask_tensorrt_version = (
      'Please specify the TensorRT version you want to use. '
      '[Leave empty to default to TensorRT %s]: ') % _DEFAULT_TENSORRT_VERSION
  tf_tensorrt_version = get_from_env_or_user_or_default(
      environ_cp, 'TF_TENSORRT_VERSION', ask_tensorrt_version,
      _DEFAULT_TENSORRT_VERSION)
  environ_cp['TF_TENSORRT_VERSION'] = tf_tensorrt_version


def set_tf_nccl_version(environ_cp):
  """Set TF_NCCL_VERSION."""
  if not is_linux():
    raise ValueError('Currently NCCL is only supported on Linux platform.')

  if 'TF_NCCL_VERSION' in environ_cp:
    return

  ask_nccl_version = (
      'Please specify the locally installed NCCL version you want to use. '
      '[Leave empty to use http://github.com/nvidia/nccl]: ')
  tf_nccl_version = get_from_env_or_user_or_default(environ_cp,
                                                    'TF_NCCL_VERSION',
                                                    ask_nccl_version, '')
  environ_cp['TF_NCCL_VERSION'] = tf_nccl_version


def get_native_cuda_compute_capabilities(environ_cp):
  """Get native cuda compute capabilities.

  Args:
    environ_cp: copy of the os.environ.

  Returns:
    string of native cuda compute capabilities, separated by comma.
  """
  device_query_bin = os.path.join(
      environ_cp.get('CUDA_TOOLKIT_PATH'), 'extras/demo_suite/deviceQuery')
  if os.path.isfile(device_query_bin) and os.access(device_query_bin, os.X_OK):
    try:
      output = run_shell(device_query_bin).split('\n')
      pattern = re.compile('[0-9]*\\.[0-9]*')
      output = [pattern.search(x) for x in output if 'Capability' in x]
      output = ','.join(x.group() for x in output if x is not None)
    except subprocess.CalledProcessError:
      output = ''
  else:
    output = ''
  return output


def set_tf_cuda_compute_capabilities(environ_cp):
  """Set TF_CUDA_COMPUTE_CAPABILITIES."""
  while True:
    native_cuda_compute_capabilities = get_native_cuda_compute_capabilities(
        environ_cp)
    if not native_cuda_compute_capabilities:
      default_cuda_compute_capabilities = _DEFAULT_CUDA_COMPUTE_CAPABILITIES
    else:
      default_cuda_compute_capabilities = native_cuda_compute_capabilities

    ask_cuda_compute_capabilities = (
        'Please specify a list of comma-separated CUDA compute capabilities '
        'you want to build with.\nYou can find the compute capability of your '
        'device at: https://developer.nvidia.com/cuda-gpus. Each capability '
        'can be specified as "x.y" or "compute_xy" to include both virtual and'
        ' binary GPU code, or as "sm_xy" to only include the binary '
        'code.\nPlease note that each additional compute capability '
        'significantly increases your build time and binary size, and that '
        'TensorFlow only supports compute capabilities >= 3.5 [Default is: '
        '%s]: ' % default_cuda_compute_capabilities)
    tf_cuda_compute_capabilities = get_from_env_or_user_or_default(
        environ_cp, 'TF_CUDA_COMPUTE_CAPABILITIES',
        ask_cuda_compute_capabilities, default_cuda_compute_capabilities)
    # Check whether all capabilities from the input is valid
    all_valid = True
    # Remove all whitespace characters before splitting the string
    # that users may insert by accident, as this will result in error
    tf_cuda_compute_capabilities = ''.join(tf_cuda_compute_capabilities.split())
    for compute_capability in tf_cuda_compute_capabilities.split(','):
      m = re.match('[0-9]+.[0-9]+', compute_capability)
      if not m:
        # We now support sm_35,sm_50,sm_60,compute_70.
        sm_compute_match = re.match('(sm|compute)_?([0-9]+[0-9]+)',
                                    compute_capability)
        if not sm_compute_match:
          print('Invalid compute capability: %s' % compute_capability)
          all_valid = False
        else:
          ver = int(sm_compute_match.group(2))
          if ver < 30:
            print(
                'ERROR: TensorFlow only supports small CUDA compute'
                ' capabilities of sm_30 and higher. Please re-specify the list'
                ' of compute capabilities excluding version %s.' % ver)
            all_valid = False
          if ver < 35:
            print('WARNING: XLA does not support CUDA compute capabilities '
                  'lower than sm_35. Disable XLA when running on older GPUs.')
      else:
        ver = float(m.group(0))
        if ver < 3.0:
          print('ERROR: TensorFlow only supports CUDA compute capabilities 3.0 '
                'and higher. Please re-specify the list of compute '
                'capabilities excluding version %s.' % ver)
          all_valid = False
        if ver < 3.5:
          print('WARNING: XLA does not support CUDA compute capabilities '
                'lower than 3.5. Disable XLA when running on older GPUs.')

    if all_valid:
      break

    # Reset and Retry
    environ_cp['TF_CUDA_COMPUTE_CAPABILITIES'] = ''

  # Set TF_CUDA_COMPUTE_CAPABILITIES
  environ_cp['TF_CUDA_COMPUTE_CAPABILITIES'] = tf_cuda_compute_capabilities
  write_action_env_to_bazelrc('TF_CUDA_COMPUTE_CAPABILITIES',
                              tf_cuda_compute_capabilities)


def set_other_cuda_vars(environ_cp):
  """Set other CUDA related variables."""
  # If CUDA is enabled, always use GPU during build and test.
  if environ_cp.get('TF_CUDA_CLANG') == '1':
    write_to_bazelrc('build --config=cuda_clang')
  else:
    write_to_bazelrc('build --config=cuda')


def set_host_cxx_compiler(environ_cp):
  """Set HOST_CXX_COMPILER."""
  default_cxx_host_compiler = which('g++') or ''

  host_cxx_compiler = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='HOST_CXX_COMPILER',
      var_default=default_cxx_host_compiler,
      ask_for_var=('Please specify which C++ compiler should be used as the '
                   'host C++ compiler.'),
      check_success=os.path.exists,
      error_msg='Invalid C++ compiler path. %s cannot be found.',
  )

  write_action_env_to_bazelrc('HOST_CXX_COMPILER', host_cxx_compiler)


def set_host_c_compiler(environ_cp):
  """Set HOST_C_COMPILER."""
  default_c_host_compiler = which('gcc') or ''

  host_c_compiler = prompt_loop_or_load_from_env(
      environ_cp,
      var_name='HOST_C_COMPILER',
      var_default=default_c_host_compiler,
      ask_for_var=('Please specify which C compiler should be used as the host '
                   'C compiler.'),
      check_success=os.path.exists,
      error_msg='Invalid C compiler path. %s cannot be found.',
  )

  write_action_env_to_bazelrc('HOST_C_COMPILER', host_c_compiler)


def system_specific_test_config(environ_cp):
  """Add default build and test flags required for TF tests to bazelrc."""
  write_to_bazelrc('test --flaky_test_attempts=3')
  write_to_bazelrc('test --test_size_filters=small,medium')

  # Each instance of --test_tag_filters or --build_tag_filters overrides all
  # previous instances, so we need to build up a complete list and write a
  # single list of filters for the .bazelrc file.

  # Filters to use with both --test_tag_filters and --build_tag_filters
  test_and_build_filters = ['-benchmark-test', '-no_oss']
  # Additional filters for --test_tag_filters beyond those in
  # test_and_build_filters
  test_only_filters = ['-oss_serial']
  if is_windows():
    test_and_build_filters.append('-no_windows')
    if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or
        (environ_cp.get('TF_NEED_ROCM', None) == '1')):
      test_and_build_filters += ['-no_windows_gpu', '-no_gpu']
    else:
      test_and_build_filters.append('-gpu')
  elif is_macos():
    test_and_build_filters += ['-gpu', '-nomac', '-no_mac']
  elif is_linux():
    if ((environ_cp.get('TF_NEED_CUDA', None) == '1') or
        (environ_cp.get('TF_NEED_ROCM', None) == '1')):
      test_and_build_filters.append('-no_gpu')
      write_to_bazelrc('test --test_env=LD_LIBRARY_PATH')
    else:
      test_and_build_filters.append('-gpu')

  # Disable tests with "v1only" tag in "v2" Bazel config, but not in "v1" config
  write_to_bazelrc('test:v1 --test_tag_filters=%s' %
                   ','.join(test_and_build_filters + test_only_filters))
  write_to_bazelrc('test:v1 --build_tag_filters=%s' %
                   ','.join(test_and_build_filters))
  write_to_bazelrc(
      'test:v2 --test_tag_filters=%s' %
      ','.join(test_and_build_filters + test_only_filters + ['-v1only']))
  write_to_bazelrc('test:v2 --build_tag_filters=%s' %
                   ','.join(test_and_build_filters + ['-v1only']))


def set_system_libs_flag(environ_cp):
  syslibs = environ_cp.get('TF_SYSTEM_LIBS', '')
  if syslibs:
    if ',' in syslibs:
      syslibs = ','.join(sorted(syslibs.split(',')))
    else:
      syslibs = ','.join(sorted(syslibs.split()))
    write_action_env_to_bazelrc('TF_SYSTEM_LIBS', syslibs)

  for varname in ('PREFIX', 'LIBDIR', 'INCLUDEDIR', 'PROTOBUF_INCLUDE_PATH'):
    if varname in environ_cp:
      write_to_bazelrc('build --define=%s=%s' % (varname, environ_cp[varname]))


def set_windows_build_flags(environ_cp):
  """Set Windows specific build options."""

  # First available in VS 16.4. Speeds up Windows compile times by a lot. See
  # https://groups.google.com/a/tensorflow.org/d/topic/build/SsW98Eo7l3o/discussion
  # pylint: disable=line-too-long
  write_to_bazelrc(
      'build --copt=/d2ReducedOptimizeHugeFunctions --host_copt=/d2ReducedOptimizeHugeFunctions'
  )

  if get_var(
      environ_cp, 'TF_OVERRIDE_EIGEN_STRONG_INLINE', 'Eigen strong inline',
      True, ('Would you like to override eigen strong inline for some C++ '
             'compilation to reduce the compilation time?'),
      'Eigen strong inline overridden.', 'Not overriding eigen strong inline, '
      'some compilations could take more than 20 mins.'):
    # Due to a known MSVC compiler issue
    # https://github.com/tensorflow/tensorflow/issues/10521
    # Overriding eigen strong inline speeds up the compiling of
    # conv_grad_ops_3d.cc and conv_ops_3d.cc by 20 minutes,
    # but this also hurts the performance. Let users decide what they want.
    write_to_bazelrc('build --define=override_eigen_strong_inline=true')


def config_info_line(name, help_text):
  """Helper function to print formatted help text for Bazel config options."""
  print('\t--config=%-12s\t# %s' % (name, help_text))


def configure_ios():
  """Configures TensorFlow for iOS builds.

  This function will only be executed if `is_macos()` is true.
  """
  if not is_macos():
    return
  for filepath in APPLE_BAZEL_FILES:
    existing_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath + '.apple')
    renamed_filepath = os.path.join(_TF_WORKSPACE_ROOT, filepath)
    symlink_force(existing_filepath, renamed_filepath)
  for filepath in IOS_FILES:
    filename = os.path.basename(filepath)
    new_filepath = os.path.join(_TF_WORKSPACE_ROOT, filename)
    symlink_force(filepath, new_filepath)


def validate_cuda_config(environ_cp):
  """Run find_cuda_config.py and return cuda_toolkit_path, or None."""

  def maybe_encode_env(env):
    """Encodes unicode in env to str on Windows python 2.x."""
    if not is_windows() or sys.version_info[0] != 2:
      return env
    for k, v in env.items():
      if isinstance(k, unicode):
        k = k.encode('ascii')
      if isinstance(v, unicode):
        v = v.encode('ascii')
      env[k] = v
    return env

  cuda_libraries = ['cuda', 'cudnn']
  if is_linux():
    if int(environ_cp.get('TF_NEED_TENSORRT', False)):
      cuda_libraries.append('tensorrt')
    if environ_cp.get('TF_NCCL_VERSION', None):
      cuda_libraries.append('nccl')

  paths = glob.glob('**/third_party/gpus/find_cuda_config.py', recursive=True)
  if not paths:
    raise FileNotFoundError(
        "Can't find 'find_cuda_config.py' script inside working directory")
  proc = subprocess.Popen(
      [environ_cp['PYTHON_BIN_PATH'], paths[0]] + cuda_libraries,
      stdout=subprocess.PIPE,
      env=maybe_encode_env(environ_cp))

  if proc.wait():
    # Errors from find_cuda_config.py were sent to stderr.
    print('Asking for detailed CUDA configuration...\n')
    return False

  config = dict(
      tuple(line.decode('ascii').rstrip().split(': ')) for line in proc.stdout)

  print('Found CUDA %s in:' % config['cuda_version'])
  print('    %s' % config['cuda_library_dir'])
  print('    %s' % config['cuda_include_dir'])

  print('Found cuDNN %s in:' % config['cudnn_version'])
  print('    %s' % config['cudnn_library_dir'])
  print('    %s' % config['cudnn_include_dir'])

  if 'tensorrt_version' in config:
    print('Found TensorRT %s in:' % config['tensorrt_version'])
    print('    %s' % config['tensorrt_library_dir'])
    print('    %s' % config['tensorrt_include_dir'])

  if config.get('nccl_version', None):
    print('Found NCCL %s in:' % config['nccl_version'])
    print('    %s' % config['nccl_library_dir'])
    print('    %s' % config['nccl_include_dir'])

  print('\n')

  environ_cp['CUDA_TOOLKIT_PATH'] = config['cuda_toolkit_path']
  return True


def main():
  global _TF_WORKSPACE_ROOT
  global _TF_BAZELRC
  global _TF_CURRENT_BAZEL_VERSION

  parser = argparse.ArgumentParser()
  parser.add_argument(
      '--workspace',
      type=str,
      default=os.path.abspath(os.path.dirname(__file__)),
      help='The absolute path to your active Bazel workspace.')
  args = parser.parse_args()

  _TF_WORKSPACE_ROOT = args.workspace
  _TF_BAZELRC = os.path.join(_TF_WORKSPACE_ROOT, _TF_BAZELRC_FILENAME)

  # Make a copy of os.environ to be clear when functions and getting and setting
  # environment variables.
  environ_cp = dict(os.environ)

  try:
    current_bazel_version = check_bazel_version(_TF_MIN_BAZEL_VERSION,
                                                _TF_MAX_BAZEL_VERSION)
  except subprocess.CalledProcessError as e:
    print('Error checking bazel version: ', e.output.decode('UTF-8').strip())
    raise e

  _TF_CURRENT_BAZEL_VERSION = convert_version_to_int(current_bazel_version)

  reset_tf_configure_bazelrc()

  cleanup_makefile()
  setup_python(environ_cp)

  if is_windows():
    environ_cp['TF_NEED_OPENCL'] = '0'
    environ_cp['TF_CUDA_CLANG'] = '0'
    environ_cp['TF_NEED_TENSORRT'] = '0'
    # TODO(ibiryukov): Investigate using clang as a cpu or cuda compiler on
    # Windows.
    environ_cp['TF_DOWNLOAD_CLANG'] = '0'
    environ_cp['TF_NEED_MPI'] = '0'

  if is_macos():
    environ_cp['TF_NEED_TENSORRT'] = '0'
  else:
    environ_cp['TF_CONFIGURE_IOS'] = '0'

  if environ_cp.get('TF_ENABLE_XLA', '1') == '1':
    write_to_bazelrc('build --config=xla')

  set_action_env_var(
      environ_cp, 'TF_NEED_ROCM', 'ROCm', False, bazel_config_name='rocm')
  if (environ_cp.get('TF_NEED_ROCM') == '1' and
      'LD_LIBRARY_PATH' in environ_cp and
      environ_cp.get('LD_LIBRARY_PATH') != '1'):
    write_action_env_to_bazelrc('LD_LIBRARY_PATH',
                                environ_cp.get('LD_LIBRARY_PATH'))

  if (environ_cp.get('TF_NEED_ROCM') == '1' and environ_cp.get('ROCM_PATH')):
    write_action_env_to_bazelrc('ROCM_PATH', environ_cp.get('ROCM_PATH'))

  if ((environ_cp.get('TF_NEED_ROCM') == '1') and
      (environ_cp.get('TF_ENABLE_MLIR_GENERATED_GPU_KERNELS') == '1')):
    write_to_bazelrc(
        'build:rocm --define tensorflow_enable_mlir_generated_gpu_kernels=1')

  environ_cp['TF_NEED_CUDA'] = str(
      int(get_var(environ_cp, 'TF_NEED_CUDA', 'CUDA', False)))
  if (environ_cp.get('TF_NEED_CUDA') == '1' and
      'TF_CUDA_CONFIG_REPO' not in environ_cp):

    set_action_env_var(
        environ_cp,
        'TF_NEED_TENSORRT',
        'TensorRT',
        False,
        bazel_config_name='tensorrt')

    environ_save = dict(environ_cp)
    for _ in range(_DEFAULT_PROMPT_ASK_ATTEMPTS):

      if validate_cuda_config(environ_cp):
        cuda_env_names = [
            'TF_CUDA_VERSION',
            'TF_CUBLAS_VERSION',
            'TF_CUDNN_VERSION',
            'TF_TENSORRT_VERSION',
            'TF_NCCL_VERSION',
            'TF_CUDA_PATHS',
            # Items below are for backwards compatibility when not using
            # TF_CUDA_PATHS.
            'CUDA_TOOLKIT_PATH',
            'CUDNN_INSTALL_PATH',
            'NCCL_INSTALL_PATH',
            'NCCL_HDR_PATH',
            'TENSORRT_INSTALL_PATH'
        ]
        # Note: set_action_env_var above already writes to bazelrc.
        for name in cuda_env_names:
          if name in environ_cp:
            write_action_env_to_bazelrc(name, environ_cp[name])
        break

      # Restore settings changed below if CUDA config could not be validated.
      environ_cp = dict(environ_save)

      set_tf_cuda_version(environ_cp)
      set_tf_cudnn_version(environ_cp)
      if is_linux():
        set_tf_tensorrt_version(environ_cp)
        set_tf_nccl_version(environ_cp)

      set_tf_cuda_paths(environ_cp)

    else:
      raise UserInputError(
          'Invalid CUDA setting were provided %d '
          'times in a row. Assuming to be a scripting mistake.' %
          _DEFAULT_PROMPT_ASK_ATTEMPTS)

    set_tf_cuda_compute_capabilities(environ_cp)
    if 'LD_LIBRARY_PATH' in environ_cp and environ_cp.get(
        'LD_LIBRARY_PATH') != '1':
      write_action_env_to_bazelrc('LD_LIBRARY_PATH',
                                  environ_cp.get('LD_LIBRARY_PATH'))

    set_tf_cuda_clang(environ_cp)
    if environ_cp.get('TF_CUDA_CLANG') == '1':
      # Ask whether we should download the clang toolchain.
      set_tf_download_clang(environ_cp)
      if environ_cp.get('TF_DOWNLOAD_CLANG') != '1':
        # Set up which clang we should use as the cuda / host compiler.
        set_clang_cuda_compiler_path(environ_cp)
      else:
        # Use downloaded LLD for linking.
        write_to_bazelrc('build:cuda_clang --config=download_clang_use_lld')
    else:
      # Set up which gcc nvcc should use as the host compiler
      # No need to set this on Windows
      if not is_windows():
        set_gcc_host_compiler_path(environ_cp)
    set_other_cuda_vars(environ_cp)
  else:
    # CUDA not required. Ask whether we should download the clang toolchain and
    # use it for the CPU build.
    set_tf_download_clang(environ_cp)

  # ROCm / CUDA are mutually exclusive.
  # At most 1 GPU platform can be configured.
  gpu_platform_count = 0
  if environ_cp.get('TF_NEED_ROCM') == '1':
    gpu_platform_count += 1
  if environ_cp.get('TF_NEED_CUDA') == '1':
    gpu_platform_count += 1
  if gpu_platform_count >= 2:
    raise UserInputError('CUDA / ROCm are mututally exclusive. '
                         'At most 1 GPU platform can be configured.')

  set_cc_opt_flags(environ_cp)
  set_system_libs_flag(environ_cp)
  if is_windows():
    set_windows_build_flags(environ_cp)

  if get_var(environ_cp, 'TF_SET_ANDROID_WORKSPACE', 'android workspace', False,
             ('Would you like to interactively configure ./WORKSPACE for '
              'Android builds?'), 'Searching for NDK and SDK installations.',
             'Not configuring the WORKSPACE for Android builds.'):
    create_android_ndk_rule(environ_cp)
    create_android_sdk_rule(environ_cp)

  system_specific_test_config(environ_cp)

  set_action_env_var(environ_cp, 'TF_CONFIGURE_IOS', 'iOS', False)
  if environ_cp.get('TF_CONFIGURE_IOS') == '1':
    configure_ios()

  print('Preconfigured Bazel build configs. You can use any of the below by '
        'adding "--config=<>" to your build command. See .bazelrc for more '
        'details.')
  config_info_line('mkl', 'Build with MKL support.')
  config_info_line('mkl_aarch64', 'Build with oneDNN support for Aarch64.')
  config_info_line('monolithic', 'Config for mostly static monolithic build.')
  config_info_line('numa', 'Build with NUMA support.')
  config_info_line(
      'dynamic_kernels',
      '(Experimental) Build kernels into separate shared objects.')
  config_info_line('v2', 'Build TensorFlow 2.x instead of 1.x.')

  print('Preconfigured Bazel build configs to DISABLE default on features:')
  config_info_line('noaws', 'Disable AWS S3 filesystem support.')
  config_info_line('nogcp', 'Disable GCP support.')
  config_info_line('nohdfs', 'Disable HDFS support.')
  config_info_line('nonccl', 'Disable NVIDIA NCCL support.')


if __name__ == '__main__':
  main()