Compare commits
5 Commits
rei/fork-r
...
r0.12
Author | SHA1 | Date | |
---|---|---|---|
|
b5e5120c58 | ||
|
87dfdc5180 | ||
|
45ab528211 | ||
|
787cd3de6a | ||
|
1e317b1f7d |
@ -476,53 +476,57 @@ shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1]
|
||||
|
||||
### `tf.expand_dims(input, axis=None, name=None, dim=None)` {#expand_dims}
|
||||
|
||||
Inserts a axisension of 1 into a tensor's shape.
|
||||
Inserts a dimension of 1 into a tensor's shape.
|
||||
|
||||
Given a tensor `input`, this operation inserts a axisension of 1 at the
|
||||
axisension index `axis` of `input`'s shape. The axisension index `axis` starts at
|
||||
zero; if you specify a negative number for `axis` it is counted backward from
|
||||
the end.
|
||||
Given a tensor `input`, this operation inserts a dimension of 1 at the
|
||||
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
|
||||
at zero; if you specify a negative number for `axis` it is counted backward
|
||||
from the end.
|
||||
|
||||
This operation is useful if you want to add a batch axisension to a single
|
||||
This operation is useful if you want to add a batch dimension to a single
|
||||
element. For example, if you have a single image of shape `[height, width,
|
||||
channels]`, you can make it a batch of 1 image with `expand_axiss(image, 0)`,
|
||||
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
|
||||
which will make the shape `[1, height, width, channels]`.
|
||||
|
||||
Other examples:
|
||||
|
||||
```prettyprint
|
||||
```python
|
||||
# 't' is a tensor of shape [2]
|
||||
shape(expand_axiss(t, 0)) ==> [1, 2]
|
||||
shape(expand_axiss(t, 1)) ==> [2, 1]
|
||||
shape(expand_axiss(t, -1)) ==> [2, 1]
|
||||
shape(expand_dims(t, 0)) ==> [1, 2]
|
||||
shape(expand_dims(t, 1)) ==> [2, 1]
|
||||
shape(expand_dims(t, -1)) ==> [2, 1]
|
||||
|
||||
# 't2' is a tensor of shape [2, 3, 5]
|
||||
shape(expand_axiss(t2, 0)) ==> [1, 2, 3, 5]
|
||||
shape(expand_axiss(t2, 2)) ==> [2, 3, 1, 5]
|
||||
shape(expand_axiss(t2, 3)) ==> [2, 3, 5, 1]
|
||||
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
|
||||
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
|
||||
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
|
||||
```
|
||||
|
||||
This operation requires that:
|
||||
|
||||
`-1-input.axiss() <= axis <= input.axiss()`
|
||||
`-1-input.dims() <= dim <= input.dims()`
|
||||
|
||||
This operation is related to `squeeze()`, which removes axisensions of
|
||||
This operation is related to `squeeze()`, which removes dimensions of
|
||||
size 1.
|
||||
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`input`</b>: A `Tensor`.
|
||||
* <b>`axis`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
|
||||
0-D (scalar). Specifies the axisension index at which to
|
||||
* <b>`axis`</b>: 0-D (scalar). Specifies the dimension index at which to
|
||||
expand the shape of `input`.
|
||||
* <b>`name`</b>: A name for the operation (optional).
|
||||
* <b>`name`</b>: The name of the output `Tensor`.
|
||||
* <b>`dim`</b>: 0-D (scalar). Equivalent to `axis`, to be deprecated.
|
||||
|
||||
##### Returns:
|
||||
|
||||
A `Tensor`. Has the same type as `input`.
|
||||
Contains the same data as `input`, but its shape has an additional
|
||||
axisension of size 1 added.
|
||||
A `Tensor` with the same data as `input`, but its shape has an additional
|
||||
dimension of size 1 added.
|
||||
|
||||
##### Raises:
|
||||
|
||||
|
||||
* <b>`ValueError`</b>: if both `dim` and `axis` are specified.
|
||||
|
||||
|
||||
- - -
|
||||
|
@ -1,50 +1,54 @@
|
||||
### `tf.expand_dims(input, axis=None, name=None, dim=None)` {#expand_dims}
|
||||
|
||||
Inserts a axisension of 1 into a tensor's shape.
|
||||
Inserts a dimension of 1 into a tensor's shape.
|
||||
|
||||
Given a tensor `input`, this operation inserts a axisension of 1 at the
|
||||
axisension index `axis` of `input`'s shape. The axisension index `axis` starts at
|
||||
zero; if you specify a negative number for `axis` it is counted backward from
|
||||
the end.
|
||||
Given a tensor `input`, this operation inserts a dimension of 1 at the
|
||||
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
|
||||
at zero; if you specify a negative number for `axis` it is counted backward
|
||||
from the end.
|
||||
|
||||
This operation is useful if you want to add a batch axisension to a single
|
||||
This operation is useful if you want to add a batch dimension to a single
|
||||
element. For example, if you have a single image of shape `[height, width,
|
||||
channels]`, you can make it a batch of 1 image with `expand_axiss(image, 0)`,
|
||||
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
|
||||
which will make the shape `[1, height, width, channels]`.
|
||||
|
||||
Other examples:
|
||||
|
||||
```prettyprint
|
||||
```python
|
||||
# 't' is a tensor of shape [2]
|
||||
shape(expand_axiss(t, 0)) ==> [1, 2]
|
||||
shape(expand_axiss(t, 1)) ==> [2, 1]
|
||||
shape(expand_axiss(t, -1)) ==> [2, 1]
|
||||
shape(expand_dims(t, 0)) ==> [1, 2]
|
||||
shape(expand_dims(t, 1)) ==> [2, 1]
|
||||
shape(expand_dims(t, -1)) ==> [2, 1]
|
||||
|
||||
# 't2' is a tensor of shape [2, 3, 5]
|
||||
shape(expand_axiss(t2, 0)) ==> [1, 2, 3, 5]
|
||||
shape(expand_axiss(t2, 2)) ==> [2, 3, 1, 5]
|
||||
shape(expand_axiss(t2, 3)) ==> [2, 3, 5, 1]
|
||||
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
|
||||
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
|
||||
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
|
||||
```
|
||||
|
||||
This operation requires that:
|
||||
|
||||
`-1-input.axiss() <= axis <= input.axiss()`
|
||||
`-1-input.dims() <= dim <= input.dims()`
|
||||
|
||||
This operation is related to `squeeze()`, which removes axisensions of
|
||||
This operation is related to `squeeze()`, which removes dimensions of
|
||||
size 1.
|
||||
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`input`</b>: A `Tensor`.
|
||||
* <b>`axis`</b>: A `Tensor`. Must be one of the following types: `int32`, `int64`.
|
||||
0-D (scalar). Specifies the axisension index at which to
|
||||
* <b>`axis`</b>: 0-D (scalar). Specifies the dimension index at which to
|
||||
expand the shape of `input`.
|
||||
* <b>`name`</b>: A name for the operation (optional).
|
||||
* <b>`name`</b>: The name of the output `Tensor`.
|
||||
* <b>`dim`</b>: 0-D (scalar). Equivalent to `axis`, to be deprecated.
|
||||
|
||||
##### Returns:
|
||||
|
||||
A `Tensor`. Has the same type as `input`.
|
||||
Contains the same data as `input`, but its shape has an additional
|
||||
axisension of size 1 added.
|
||||
A `Tensor` with the same data as `input`, but its shape has an additional
|
||||
dimension of size 1 added.
|
||||
|
||||
##### Raises:
|
||||
|
||||
|
||||
* <b>`ValueError`</b>: if both `dim` and `axis` are specified.
|
||||
|
||||
|
@ -286,7 +286,7 @@ accept a _pandas_ `Dataframe` and return feature column and label values as
|
||||
|
||||
```python
|
||||
def input_fn(data_set):
|
||||
feature_cols = {k: tf.constant(data_set[k].values
|
||||
feature_cols = {k: tf.constant(data_set[k].values)
|
||||
for k in FEATURES}
|
||||
labels = tf.constant(data_set[LABEL].values)
|
||||
return feature_cols, labels
|
||||
|
@ -130,13 +130,59 @@ _baseslice = slice
|
||||
|
||||
# pylint: disable=redefined-builtin,protected-access
|
||||
def expand_dims(input, axis=None, name=None, dim=None):
|
||||
"""Inserts a dimension of 1 into a tensor's shape.
|
||||
|
||||
Given a tensor `input`, this operation inserts a dimension of 1 at the
|
||||
dimension index `axis` of `input`'s shape. The dimension index `axis` starts
|
||||
at zero; if you specify a negative number for `axis` it is counted backward
|
||||
from the end.
|
||||
|
||||
This operation is useful if you want to add a batch dimension to a single
|
||||
element. For example, if you have a single image of shape `[height, width,
|
||||
channels]`, you can make it a batch of 1 image with `expand_dims(image, 0)`,
|
||||
which will make the shape `[1, height, width, channels]`.
|
||||
|
||||
Other examples:
|
||||
|
||||
```python
|
||||
# 't' is a tensor of shape [2]
|
||||
shape(expand_dims(t, 0)) ==> [1, 2]
|
||||
shape(expand_dims(t, 1)) ==> [2, 1]
|
||||
shape(expand_dims(t, -1)) ==> [2, 1]
|
||||
|
||||
# 't2' is a tensor of shape [2, 3, 5]
|
||||
shape(expand_dims(t2, 0)) ==> [1, 2, 3, 5]
|
||||
shape(expand_dims(t2, 2)) ==> [2, 3, 1, 5]
|
||||
shape(expand_dims(t2, 3)) ==> [2, 3, 5, 1]
|
||||
```
|
||||
|
||||
This operation requires that:
|
||||
|
||||
`-1-input.dims() <= dim <= input.dims()`
|
||||
|
||||
This operation is related to `squeeze()`, which removes dimensions of
|
||||
size 1.
|
||||
|
||||
Args:
|
||||
input: A `Tensor`.
|
||||
axis: 0-D (scalar). Specifies the dimension index at which to
|
||||
expand the shape of `input`.
|
||||
name: The name of the output `Tensor`.
|
||||
dim: 0-D (scalar). Equivalent to `axis`, to be deprecated.
|
||||
|
||||
Returns:
|
||||
A `Tensor` with the same data as `input`, but its shape has an additional
|
||||
dimension of size 1 added.
|
||||
|
||||
Raises:
|
||||
ValueError: if both `dim` and `axis` are specified.
|
||||
"""
|
||||
# TODO(aselle): Remove argument dim
|
||||
if dim is not None:
|
||||
if axis is not None:
|
||||
raise ValueError("can't specify both 'dim' and 'axis'")
|
||||
axis = dim
|
||||
return gen_array_ops._expand_dims(input, axis, name)
|
||||
expand_dims.__doc__ = gen_array_ops._expand_dims.__doc__.replace("dim", "axis")
|
||||
# pylint: enable=redefined-builtin,protected-access
|
||||
|
||||
|
||||
|
@ -64,7 +64,7 @@ def tf_workspace(path_prefix = "", tf_repo_name = ""):
|
||||
|
||||
native.new_http_archive(
|
||||
name = "nasm",
|
||||
url = "http://www.nasm.us/pub/nasm/releasebuilds/2.12.02/nasm-2.12.02.tar.bz2",
|
||||
url = "http://pkgs.fedoraproject.org/repo/pkgs/nasm/nasm-2.12.02.tar.bz2/d15843c3fb7db39af80571ee27ec6fad/nasm-2.12.02.tar.bz2",
|
||||
sha256 = "00b0891c678c065446ca59bcee64719d0096d54d6886e6e472aeee2e170ae324",
|
||||
strip_prefix = "nasm-2.12.02",
|
||||
build_file = str(Label("//third_party:nasm.BUILD")),
|
||||
@ -228,7 +228,7 @@ def tf_workspace(path_prefix = "", tf_repo_name = ""):
|
||||
|
||||
native.new_http_archive(
|
||||
name = "zlib_archive",
|
||||
url = "http://zlib.net/zlib-1.2.8.tar.gz",
|
||||
url = "http://zlib.net/fossils/zlib-1.2.8.tar.gz",
|
||||
sha256 = "36658cb768a54c1d4dec43c3116c27ed893e88b02ecfcb44f2166f9c0b7f2a0d",
|
||||
strip_prefix = "zlib-1.2.8",
|
||||
build_file = str(Label("//:zlib.BUILD")),
|
||||
|
Loading…
Reference in New Issue
Block a user