Update generated Python Op docs.
Change: 146176865
This commit is contained in:
parent
30771c9087
commit
fd7d78ddf1
@ -35,6 +35,13 @@ be `dtypes.float32` or `dtypes.float64`. If neither `tensors` nor
|
||||
float.
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.contrib.framework.assert_scalar(tensor, name=None)` {#assert_scalar}
|
||||
|
||||
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.contrib.framework.assert_scalar_int(tensor, name=None)` {#assert_scalar_int}
|
||||
@ -225,6 +232,27 @@ adds them via `tf.add_n`.
|
||||
* <b>`ValueError`</b>: if `losses` is missing or empty.
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.contrib.framework.remove_squeezable_dimensions(predictions, labels, name=None)` {#remove_squeezable_dimensions}
|
||||
|
||||
Squeeze last dim if ranks of `predictions` and `labels` differ by 1.
|
||||
|
||||
This will use static shape if available. Otherwise, it will add graph
|
||||
operations, which could result in a performance hit.
|
||||
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`predictions`</b>: Predicted values, a `Tensor` of arbitrary dimensions.
|
||||
* <b>`labels`</b>: Label values, a `Tensor` whose dimensions match `predictions`.
|
||||
* <b>`name`</b>: Name of the op.
|
||||
|
||||
##### Returns:
|
||||
|
||||
Tuple of `predictions` and `labels`, possibly with last dim squeezed.
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.contrib.framework.with_shape(expected_shape, tensor)` {#with_shape}
|
||||
@ -650,6 +678,46 @@ Create global step tensor in graph.
|
||||
* <b>`ValueError`</b>: if global step key is already defined.
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.contrib.framework.filter_variables(var_list, include_patterns=None, exclude_patterns=None, reg_search=True)` {#filter_variables}
|
||||
|
||||
Filter a list of variables using regular expressions.
|
||||
|
||||
First includes variables according to the list of include_patterns.
|
||||
Afterwards, eliminates variables according to the list of exclude_patterns.
|
||||
|
||||
For example, one can obtain a list of variables with the weights of all
|
||||
convolutional layers (depending on the network definition) by:
|
||||
|
||||
```python
|
||||
variables = tf.contrib.framework.get_model_variables()
|
||||
conv_weight_variables = tf.contrib.framework.filter_variables(
|
||||
variables,
|
||||
include_patterns=['Conv'],
|
||||
exclude_patterns=['biases', 'Logits'])
|
||||
```
|
||||
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`var_list`</b>: list of variables.
|
||||
* <b>`include_patterns`</b>: list of regular expressions to include. Defaults to None,
|
||||
which means all variables are selected according to the include rules.
|
||||
A variable is included if it matches any of the include_patterns.
|
||||
* <b>`exclude_patterns`</b>: list of regular expressions to exclude. Defaults to None,
|
||||
which means all variables are selected according to the exclude rules.
|
||||
A variable is excluded if it matches any of the exclude_patterns.
|
||||
* <b>`reg_search`</b>: boolean. If True (default), performs re.search to find matches
|
||||
(i.e. pattern can match any substring of the variable name). If False,
|
||||
performs re.match (i.e. regexp should match from the beginning of the
|
||||
variable name).
|
||||
|
||||
##### Returns:
|
||||
|
||||
filtered list of variables.
|
||||
|
||||
|
||||
- - -
|
||||
|
||||
### `tf.train.get_global_step(graph=None)` {#get_global_step}
|
||||
|
@ -0,0 +1,4 @@
|
||||
### `tf.contrib.framework.assert_scalar(tensor, name=None)` {#assert_scalar}
|
||||
|
||||
|
||||
|
@ -0,0 +1,37 @@
|
||||
### `tf.contrib.framework.filter_variables(var_list, include_patterns=None, exclude_patterns=None, reg_search=True)` {#filter_variables}
|
||||
|
||||
Filter a list of variables using regular expressions.
|
||||
|
||||
First includes variables according to the list of include_patterns.
|
||||
Afterwards, eliminates variables according to the list of exclude_patterns.
|
||||
|
||||
For example, one can obtain a list of variables with the weights of all
|
||||
convolutional layers (depending on the network definition) by:
|
||||
|
||||
```python
|
||||
variables = tf.contrib.framework.get_model_variables()
|
||||
conv_weight_variables = tf.contrib.framework.filter_variables(
|
||||
variables,
|
||||
include_patterns=['Conv'],
|
||||
exclude_patterns=['biases', 'Logits'])
|
||||
```
|
||||
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`var_list`</b>: list of variables.
|
||||
* <b>`include_patterns`</b>: list of regular expressions to include. Defaults to None,
|
||||
which means all variables are selected according to the include rules.
|
||||
A variable is included if it matches any of the include_patterns.
|
||||
* <b>`exclude_patterns`</b>: list of regular expressions to exclude. Defaults to None,
|
||||
which means all variables are selected according to the exclude rules.
|
||||
A variable is excluded if it matches any of the exclude_patterns.
|
||||
* <b>`reg_search`</b>: boolean. If True (default), performs re.search to find matches
|
||||
(i.e. pattern can match any substring of the variable name). If False,
|
||||
performs re.match (i.e. regexp should match from the beginning of the
|
||||
variable name).
|
||||
|
||||
##### Returns:
|
||||
|
||||
filtered list of variables.
|
||||
|
@ -0,0 +1,18 @@
|
||||
### `tf.contrib.framework.remove_squeezable_dimensions(predictions, labels, name=None)` {#remove_squeezable_dimensions}
|
||||
|
||||
Squeeze last dim if ranks of `predictions` and `labels` differ by 1.
|
||||
|
||||
This will use static shape if available. Otherwise, it will add graph
|
||||
operations, which could result in a performance hit.
|
||||
|
||||
##### Args:
|
||||
|
||||
|
||||
* <b>`predictions`</b>: Predicted values, a `Tensor` of arbitrary dimensions.
|
||||
* <b>`labels`</b>: Label values, a `Tensor` whose dimensions match `predictions`.
|
||||
* <b>`name`</b>: Name of the op.
|
||||
|
||||
##### Returns:
|
||||
|
||||
Tuple of `predictions` and `labels`, possibly with last dim squeezed.
|
||||
|
@ -811,6 +811,7 @@
|
||||
* [`assert_global_step`](../../api_docs/python/contrib.framework.md#assert_global_step)
|
||||
* [`assert_or_get_global_step`](../../api_docs/python/contrib.framework.md#assert_or_get_global_step)
|
||||
* [`assert_same_float_dtype`](../../api_docs/python/contrib.framework.md#assert_same_float_dtype)
|
||||
* [`assert_scalar`](../../api_docs/python/contrib.framework.md#assert_scalar)
|
||||
* [`assert_scalar_int`](../../api_docs/python/contrib.framework.md#assert_scalar_int)
|
||||
* [`assign_from_checkpoint`](../../api_docs/python/contrib.framework.md#assign_from_checkpoint)
|
||||
* [`assign_from_checkpoint_fn`](../../api_docs/python/contrib.framework.md#assign_from_checkpoint_fn)
|
||||
@ -821,6 +822,7 @@
|
||||
* [`deprecated`](../../api_docs/python/contrib.framework.md#deprecated)
|
||||
* [`deprecated_arg_values`](../../api_docs/python/contrib.framework.md#deprecated_arg_values)
|
||||
* [`deprecated_args`](../../api_docs/python/contrib.framework.md#deprecated_args)
|
||||
* [`filter_variables`](../../api_docs/python/contrib.framework.md#filter_variables)
|
||||
* [`get_global_step`](../../api_docs/python/contrib.framework.md#get_global_step)
|
||||
* [`get_graph_from_inputs`](../../api_docs/python/contrib.framework.md#get_graph_from_inputs)
|
||||
* [`get_local_variables`](../../api_docs/python/contrib.framework.md#get_local_variables)
|
||||
@ -843,6 +845,7 @@
|
||||
* [`local_variable`](../../api_docs/python/contrib.framework.md#local_variable)
|
||||
* [`model_variable`](../../api_docs/python/contrib.framework.md#model_variable)
|
||||
* [`reduce_sum_n`](../../api_docs/python/contrib.framework.md#reduce_sum_n)
|
||||
* [`remove_squeezable_dimensions`](../../api_docs/python/contrib.framework.md#remove_squeezable_dimensions)
|
||||
* [`variable`](../../api_docs/python/contrib.framework.md#variable)
|
||||
* [`VariableDeviceChooser`](../../api_docs/python/contrib.framework.md#VariableDeviceChooser)
|
||||
* [`with_same_shape`](../../api_docs/python/contrib.framework.md#with_same_shape)
|
||||
|
Loading…
x
Reference in New Issue
Block a user