Rollback: Report unsupported operators when the given operators have unknown dimensions
PiperOrigin-RevId: 356182411 Change-Id: I4b91e2935923b201c8bd6b6404e997a56a799117
This commit is contained in:
parent
eb88a73aa8
commit
fcbc424700
@ -47,15 +47,4 @@ TfLiteStatus ResetVariableTensor(TfLiteTensor* tensor) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
bool HasUnspecifiedDimension(const TfLiteTensor* tensor) {
|
||||
#ifndef TF_LITE_STATIC_MEMORY
|
||||
if (tensor->dims_signature) {
|
||||
for (int i = 0; i < tensor->dims_signature->size; ++i) {
|
||||
if (tensor->dims_signature->data[i] == -1) return true;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace tflite
|
||||
|
@ -23,9 +23,6 @@ namespace tflite {
|
||||
// Resets a variable tensor to the default value.
|
||||
TfLiteStatus ResetVariableTensor(TfLiteTensor* tensor);
|
||||
|
||||
// Returns true when the given tensor has unknown dimensions.
|
||||
bool HasUnspecifiedDimension(const TfLiteTensor* tensor);
|
||||
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_CORE_API_TENSOR_UTILS_H_
|
||||
|
@ -162,7 +162,6 @@ cc_library(
|
||||
"//tensorflow/lite/delegates:utils",
|
||||
"//tensorflow/lite:kernel_api",
|
||||
"//tensorflow/lite:util",
|
||||
"//tensorflow/lite/core/api",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/delegates/gpu/common/transformations:model_transformations",
|
||||
"//tensorflow/lite/kernels:kernel_util",
|
||||
|
@ -33,7 +33,6 @@ limitations under the License.
|
||||
#include "tensorflow/lite/builtin_ops.h"
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/core/api/tensor_utils.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/custom_parsers.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/data_type.h"
|
||||
#include "tensorflow/lite/delegates/gpu/common/lstm_parser.h"
|
||||
@ -2412,24 +2411,6 @@ std::unique_ptr<TFLiteOperationParser> NewOperationParser(
|
||||
absl::Status IsSupported(const TfLiteContext* context, TfLiteNode* node,
|
||||
const TfLiteRegistration* registration,
|
||||
bool allow_quant_ops = false) {
|
||||
// Report it unsupported if there are unknown shapes in input/output tensors.
|
||||
for (int i = 0; i < node->inputs->size; i++) {
|
||||
const int input_id = node->inputs->data[i];
|
||||
const auto* tensor = context->tensors + input_id;
|
||||
if (HasUnspecifiedDimension(tensor)) {
|
||||
return absl::UnimplementedError(
|
||||
"one of input tensors has unknown dimension(s)");
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < node->outputs->size; i++) {
|
||||
const int output_id = node->outputs->data[i];
|
||||
const auto* tensor = context->tensors + output_id;
|
||||
if (HasUnspecifiedDimension(tensor)) {
|
||||
return absl::UnimplementedError(
|
||||
"one of output tensors has unknown dimension(s)");
|
||||
}
|
||||
}
|
||||
|
||||
return NewOperationParser(registration, allow_quant_ops)
|
||||
->IsSupported(context, node, registration);
|
||||
}
|
||||
|
@ -1248,122 +1248,6 @@ TEST(ModelBuilderTest, GetOpsToReplace_AllowQuantOps) {
|
||||
TfLiteIntArrayFree(ops_to_replace_without_quant);
|
||||
}
|
||||
|
||||
class InterpreterDynamicDimensions : public DelegatedInterpreter {
|
||||
public:
|
||||
InterpreterDynamicDimensions() : DelegatedInterpreter(3) {
|
||||
void* builtin_data = malloc(sizeof(int));
|
||||
EXPECT_EQ(interpreter_.AddTensors(5), kTfLiteOk);
|
||||
EXPECT_EQ(interpreter_.SetInputs({0, 2}), kTfLiteOk);
|
||||
EXPECT_EQ(interpreter_.SetOutputs({3, 4}), kTfLiteOk);
|
||||
|
||||
// Add a Dequantize Node with uint8 input.
|
||||
const TfLiteRegistration reg_dequant0 = {/*init=*/nullptr,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*invoke=*/nullptr,
|
||||
/*profiling_string=*/nullptr,
|
||||
kTfLiteBuiltinDequantize};
|
||||
EXPECT_EQ(interpreter_.AddNodeWithParameters(
|
||||
/*inputs=*/{0}, /*outputs=*/{1}, /*init_data=*/nullptr,
|
||||
/*init_data_size=*/0, /*builtin_data=*/nullptr,
|
||||
/*registration=*/®_dequant0),
|
||||
kTfLiteOk);
|
||||
|
||||
const TfLiteRegistration reg_add = {
|
||||
[](TfLiteContext* context, const char* buffer, size_t length) {
|
||||
return reinterpret_cast<void*>(new int(1));
|
||||
},
|
||||
[](TfLiteContext* context, void* buffer) {
|
||||
delete reinterpret_cast<int*>(buffer);
|
||||
},
|
||||
nullptr,
|
||||
nullptr,
|
||||
nullptr,
|
||||
kTfLiteBuiltinSub};
|
||||
|
||||
// Add an Add node that contains a dynamic output.
|
||||
EXPECT_EQ(interpreter_.AddNodeWithParameters(
|
||||
/*inputs=*/{1, 2}, /*outputs=*/{3}, /*init_data=*/nullptr,
|
||||
/*init_data_size=*/0,
|
||||
/*builtin_data=*/builtin_data,
|
||||
/*registration=*/®_add),
|
||||
kTfLiteOk);
|
||||
|
||||
// Add an Add node that contains a dynamic input.
|
||||
EXPECT_EQ(interpreter_.AddNodeWithParameters(
|
||||
/*inputs=*/{0, 2}, /*outputs=*/{4}, /*init_data=*/nullptr,
|
||||
/*init_data_size=*/0,
|
||||
/*builtin_data=*/builtin_data,
|
||||
/*registration=*/®_add),
|
||||
kTfLiteOk);
|
||||
|
||||
const std::vector<int> dims = {1};
|
||||
const std::vector<int> dims_signature = {-1};
|
||||
TfLiteQuantizationParams quantization;
|
||||
|
||||
EXPECT_EQ(interpreter_.SetTensorParametersReadWrite(
|
||||
0, TfLiteType::kTfLiteUInt8, "t0", dims, quantization, false,
|
||||
&dims_signature),
|
||||
kTfLiteOk);
|
||||
EXPECT_EQ(interpreter_.SetTensorParametersReadWrite(
|
||||
1, TfLiteType::kTfLiteFloat32, "t1", dims, quantization,
|
||||
false, &dims),
|
||||
kTfLiteOk);
|
||||
EXPECT_EQ(interpreter_.SetTensorParametersReadWrite(
|
||||
2, TfLiteType::kTfLiteFloat32, "t2", dims, quantization,
|
||||
false, &dims),
|
||||
kTfLiteOk);
|
||||
EXPECT_EQ(interpreter_.SetTensorParametersReadWrite(
|
||||
3, TfLiteType::kTfLiteFloat32, "t3", dims, quantization,
|
||||
false, &dims_signature),
|
||||
kTfLiteOk);
|
||||
EXPECT_EQ(interpreter_.SetTensorParametersReadWrite(
|
||||
4, TfLiteType::kTfLiteFloat32, "t4", dims, quantization,
|
||||
false, &dims),
|
||||
kTfLiteOk);
|
||||
|
||||
exec_plan()->data[0] = 0;
|
||||
exec_plan()->data[1] = 1;
|
||||
exec_plan()->data[2] = 2;
|
||||
}
|
||||
};
|
||||
|
||||
InterpreterDynamicDimensions* interpreter_dynamic_dimensions =
|
||||
new InterpreterDynamicDimensions();
|
||||
|
||||
TEST(ModelBuilderTest, GetOpsToReplacePrunesDynamicDimensions) {
|
||||
TfLiteContext* context = interpreter_dynamic_dimensions->context();
|
||||
|
||||
context->GetExecutionPlan = [](struct TfLiteContext* context,
|
||||
TfLiteIntArray** execution_plan) {
|
||||
*execution_plan = interpreter_dynamic_dimensions->exec_plan();
|
||||
return kTfLiteOk;
|
||||
};
|
||||
context->GetNodeAndRegistration = [](struct TfLiteContext*, int node_index,
|
||||
TfLiteNode** node,
|
||||
TfLiteRegistration** registration) {
|
||||
*node = interpreter_dynamic_dimensions->node(node_index);
|
||||
*registration = interpreter_dynamic_dimensions->registration(node_index);
|
||||
return kTfLiteOk;
|
||||
};
|
||||
context->PreviewDelegatePartitioning =
|
||||
[](struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace,
|
||||
TfLiteDelegateParams** partition_params_array, int* num_partitions) {
|
||||
// No selected nodes.
|
||||
EXPECT_EQ(nodes_to_replace->size, 0);
|
||||
*partition_params_array = nullptr;
|
||||
*num_partitions = 0;
|
||||
return kTfLiteOk;
|
||||
};
|
||||
|
||||
TfLiteIntArray* ops_to_replace = GetOpsToReplace(context);
|
||||
|
||||
// Reject all the ops since they are based on dynamic dimensions.
|
||||
EXPECT_EQ(ops_to_replace->size, 0);
|
||||
|
||||
TfLiteIntArrayFree(ops_to_replace);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
} // namespace gpu
|
||||
} // namespace tflite
|
||||
|
@ -34,7 +34,6 @@ cc_library(
|
||||
"//tensorflow/lite:minimal_logging",
|
||||
"//tensorflow/lite:util",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/core/api",
|
||||
"//tensorflow/lite/delegates:utils",
|
||||
"//tensorflow/lite/kernels:kernel_util",
|
||||
"//tensorflow/lite/nnapi:nnapi_implementation",
|
||||
@ -69,7 +68,6 @@ cc_library(
|
||||
"//tensorflow/lite:minimal_logging",
|
||||
"//tensorflow/lite:util",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/core/api",
|
||||
"//tensorflow/lite/delegates:utils",
|
||||
"//tensorflow/lite/kernels:kernel_util",
|
||||
"//tensorflow/lite/nnapi:nnapi_implementation",
|
||||
|
@ -49,7 +49,6 @@ limitations under the License.
|
||||
#include "tensorflow/lite/c/builtin_op_data.h"
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/context_util.h"
|
||||
#include "tensorflow/lite/core/api/tensor_utils.h"
|
||||
#include "tensorflow/lite/delegates/nnapi/nnapi_delegate_kernel.h"
|
||||
#include "tensorflow/lite/delegates/nnapi/quant_lstm_sup.h"
|
||||
#include "tensorflow/lite/delegates/utils.h"
|
||||
@ -381,6 +380,15 @@ bool IsHybridOperator(const TfLiteContext* context, int builtin_code,
|
||||
}
|
||||
}
|
||||
|
||||
bool HasUnspecifiedDimension(const TfLiteTensor* tensor) {
|
||||
if (tensor->dims_signature) {
|
||||
for (int i : TfLiteIntArrayView(tensor->dims_signature)) {
|
||||
if (i == -1) return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
ANeuralNetworksOperandType ConvertTensorTypeToNNType(
|
||||
const TfLiteTensor* tensor, TfLiteType ann_type_equivalent) {
|
||||
int32_t nn_type = 0;
|
||||
|
Loading…
Reference in New Issue
Block a user