Update ops-related pbtxt files.

Change: 120184745
This commit is contained in:
A. Unique TensorFlower 2016-04-18 17:37:15 -08:00 committed by TensorFlower Gardener
parent b3b58fc059
commit fc432e37a7
2 changed files with 112 additions and 0 deletions

View File

@ -17056,6 +17056,58 @@ op {
}
}
}
op {
name: "SparseReduceSum"
input_arg {
name: "input_indices"
type: DT_INT64
}
input_arg {
name: "input_values"
type_attr: "T"
}
input_arg {
name: "input_shape"
type: DT_INT64
}
input_arg {
name: "reduction_axes"
type: DT_INT32
}
output_arg {
name: "output"
type_attr: "T"
}
attr {
name: "keep_dims"
type: "bool"
default_value {
b: false
}
}
attr {
name: "T"
type: "type"
allowed_values {
list {
type: DT_FLOAT
type: DT_DOUBLE
type: DT_INT64
type: DT_INT32
type: DT_UINT8
type: DT_UINT16
type: DT_INT16
type: DT_INT8
type: DT_COMPLEX64
type: DT_COMPLEX128
type: DT_QINT8
type: DT_QUINT8
type: DT_QINT32
type: DT_HALF
}
}
}
}
op {
name: "SparseReorder"
input_arg {

View File

@ -10363,6 +10363,66 @@ op {
summary: "Multiply matrix \"a\" by matrix \"b\"."
description: "The inputs must be two-dimensional matrices and the inner dimension of \"a\" must\nmatch the outer dimension of \"b\". This op is optimized for the case where at\nleast one of \"a\" or \"b\" is sparse. The breakeven for using this versus a dense\nmatrix multiply on one platform was 30% zero values in the sparse matrix."
}
op {
name: "SparseReduceSum"
input_arg {
name: "input_indices"
description: "2-D. `N x R` matrix with the indices of non-empty values in a\nSparseTensor, possibly not in canonical ordering."
type: DT_INT64
}
input_arg {
name: "input_values"
description: "1-D. `N` non-empty values corresponding to `input_indices`."
type_attr: "T"
}
input_arg {
name: "input_shape"
description: "1-D. Shape of the input SparseTensor."
type: DT_INT64
}
input_arg {
name: "reduction_axes"
description: "1-D. Length-`K` vector containing the reduction axes."
type: DT_INT32
}
output_arg {
name: "output"
description: "`R-K`-D. The reduced Tensor."
type_attr: "T"
}
attr {
name: "keep_dims"
type: "bool"
default_value {
b: false
}
description: "If true, retain reduced dimensions with length 1."
}
attr {
name: "T"
type: "type"
allowed_values {
list {
type: DT_FLOAT
type: DT_DOUBLE
type: DT_INT64
type: DT_INT32
type: DT_UINT8
type: DT_UINT16
type: DT_INT16
type: DT_INT8
type: DT_COMPLEX64
type: DT_COMPLEX128
type: DT_QINT8
type: DT_QUINT8
type: DT_QINT32
type: DT_HALF
}
}
}
summary: "Computes the sum of elements across dimensions of a SparseTensor."
description: "This Op takes a SparseTensor and is the sparse counterpart to\n`tf.reduce_sum()`. In particular, this Op also returns a dense `Tensor`\ninstead of a sparse one.\n\nReduces `sp_input` along the dimensions given in `reduction_axes`. Unless\n`keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in\n`reduction_axes`. If `keep_dims` is true, the reduced dimensions are retained\nwith length 1.\n\nIf `reduction_axes` has no entries, all dimensions are reduced, and a tensor\nwith a single element is returned."
}
op {
name: "SparseReorder"
input_arg {