diff --git a/tensorflow/contrib/layers/python/layers/feature_column_ops.py b/tensorflow/contrib/layers/python/layers/feature_column_ops.py index fa0047f05d8..78affea44cb 100644 --- a/tensorflow/contrib/layers/python/layers/feature_column_ops.py +++ b/tensorflow/contrib/layers/python/layers/feature_column_ops.py @@ -97,10 +97,13 @@ def _input_from_feature_columns(columns_to_tensors, trainable, scope, output_rank, - default_name): + default_name, + cols_to_outs=None): """Implementation of `input_from(_sequence)_feature_columns`.""" columns_to_tensors = columns_to_tensors.copy() check_feature_columns(feature_columns) + if cols_to_outs is not None and not isinstance(cols_to_outs, dict): + raise ValueError('cols_to_outs must be a dict unless None') with variable_scope.variable_scope(scope, default_name=default_name, values=columns_to_tensors.values()): @@ -144,6 +147,8 @@ def _input_from_feature_columns(columns_to_tensors, except ValueError as e: raise ValueError('Error creating input layer for column: {}.\n' '{}, {}'.format(column.name, e, ee)) + if cols_to_outs is not None: + cols_to_outs[column] = output_tensors[-1] return array_ops.concat(output_tensors, output_rank - 1) @@ -151,7 +156,8 @@ def input_from_feature_columns(columns_to_tensors, feature_columns, weight_collections=None, trainable=True, - scope=None): + scope=None, + cols_to_outs=None): """A tf.contrib.layers style input layer builder based on FeatureColumns. Generally a single example in training data is described with feature columns. @@ -196,6 +202,8 @@ def input_from_feature_columns(columns_to_tensors, trainable: If `True` also add variables to the graph collection `GraphKeys.TRAINABLE_VARIABLES` (see tf.Variable). scope: Optional scope for variable_scope. + cols_to_outs: Optional dict from feature column to output tensor, + which is concatenated into the returned tensor. Returns: A Tensor which can be consumed by hidden layers in the neural network. @@ -209,7 +217,8 @@ def input_from_feature_columns(columns_to_tensors, trainable, scope, output_rank=2, - default_name='input_from_feature_columns') + default_name='input_from_feature_columns', + cols_to_outs=cols_to_outs) @experimental diff --git a/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py b/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py index fbfa0e32de5..e6bbd86ab72 100644 --- a/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py +++ b/tensorflow/contrib/layers/python/layers/feature_column_ops_test.py @@ -607,6 +607,31 @@ class CreateInputLayersForDNNsTest(test.TestCase): # Verify cross compatibility: Core builder output should equal to contrib. self.assertAllEqual(output.eval().shape, output_core.eval().shape) + def testAllDNNColumnsWithColumnwiseOutputs(self): + sparse_column = feature_column.sparse_column_with_keys( + "ids", ["a", "b", "c", "unseen"]) + real_valued_column = feature_column.real_valued_column("income", 2) + one_hot_column = feature_column.one_hot_column(sparse_column) + embedding_column = feature_column.embedding_column(sparse_column, 10) + features = { + "ids": + sparse_tensor.SparseTensor( + values=["c", "b", "a"], + indices=[[0, 0], [1, 0], [2, 0]], + dense_shape=[3, 1]), + "income": + constant_op.constant([[20.3, 10], [110.3, 0.4], [-3.0, 30.4]]), + } + columns = [one_hot_column, embedding_column, real_valued_column] + cols_to_outs = {} + feature_column_ops.input_from_feature_columns( + features, columns, cols_to_outs=cols_to_outs) + with self.test_session(): + variables_lib.global_variables_initializer().run() + lookup_ops.tables_initializer().run() + for column in columns: + self.assertTrue(column in cols_to_outs) + def testRealValuedColumn(self): real_valued = feature_column.real_valued_column("price") features = {"price": constant_op.constant([[20.], [110], [-3]])}