Automated rollback of commit 916df403fb

PiperOrigin-RevId: 230002892
This commit is contained in:
A. Unique TensorFlower 2019-01-18 15:16:37 -08:00 committed by TensorFlower Gardener
parent d319d8d716
commit fb4381d0b5
2 changed files with 6 additions and 18 deletions
tensorflow/python/keras/engine

View File

@ -513,10 +513,11 @@ class Layer(checkpointable.Checkpointable):
ValueError: if the layer's `call` method returns None (an invalid value).
"""
input_list = nest.flatten(inputs)
# Accept NumPy inputs by converting to Tensors.
if all(isinstance(x, (np.ndarray, float, int)) for x in input_list):
inputs = nest.map_structure(ops.convert_to_tensor, inputs)
input_list = nest.flatten(inputs)
if context.executing_eagerly():
# Accept NumPy inputs by converting to Tensors when executing eagerly.
if all(isinstance(x, (np.ndarray, float, int)) for x in input_list):
inputs = nest.map_structure(ops.convert_to_tensor, inputs)
input_list = nest.flatten(inputs)
# We will attempt to build a TF graph if & only if all inputs are symbolic.
# This is always the case in graph mode. It can also be the case in eager

View File

@ -26,8 +26,6 @@ from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.framework import test_util
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import testing_utils
from tensorflow.python.keras.engine import base_layer
from tensorflow.python.keras.optimizer_v2 import rmsprop
from tensorflow.python.ops import array_ops
@ -73,7 +71,7 @@ class InvalidLayer(base_layer.Layer):
raise ValueError('You did something wrong!')
class BaseLayerTest(keras_parameterized.TestCase):
class BaseLayerTest(test.TestCase, parameterized.TestCase):
@parameterized.parameters(DynamicLayer1, DynamicLayer2)
def test_dynamic_layer_in_functional_model_in_graph_mode(self, layer_class):
@ -212,17 +210,6 @@ class BaseLayerTest(keras_parameterized.TestCase):
with self.assertRaisesRegexp(ValueError, 'You did something wrong!'):
_ = InvalidLayer()(inputs)
@keras_parameterized.run_with_all_model_types
@test_util.run_in_graph_and_eager_modes
def test_build_with_numpy_data(self):
model_layers = [
keras.layers.Dense(3, activation='relu', kernel_initializer='ones'),
keras.layers.Dense(1, activation='sigmoid', kernel_initializer='ones')
]
model = testing_utils.get_model_from_layers(model_layers, input_shape=(4,))
model(np.zeros((2, 4), dtype='float32'))
self.assertTrue(model.built)
def test_using_symbolic_tensors_with_tf_ops(self):
# Single-input.
x = keras.Input((3,))