disabling subtests that test features not yet supported on the ROCm platform
This commit is contained in:
parent
9b37506535
commit
fb2f10e281
tensorflow
@ -83,7 +83,10 @@ void ExecuteWithProfiling(bool async) {
|
||||
if (!gpu_device_name.empty()) {
|
||||
EXPECT_TRUE(HasSubstr(profile_proto_str, "/device:GPU:0"));
|
||||
// device name with "stream:all" is collected by Device Tracer.
|
||||
#ifndef TENSORFLOW_USE_ROCM
|
||||
// ROCm platform does not yet support stream level tracing
|
||||
EXPECT_TRUE(HasSubstr(profile_proto_str, "stream:all"));
|
||||
#endif
|
||||
}
|
||||
// "/host:CPU" is collected by TraceMe
|
||||
EXPECT_TRUE(HasSubstr(profile_proto_str, "/host:CPU"));
|
||||
|
@ -1001,6 +1001,10 @@ class FusedConv2DWithBatchNormOpTest : public FusedConv2DOpTest<T> {};
|
||||
TYPED_TEST_SUITE_P(FusedConv2DWithBiasOpTest);
|
||||
TYPED_TEST_SUITE_P(FusedConv2DWithBatchNormOpTest);
|
||||
|
||||
// ROCm does not yet support the _FusedConv2D op,
|
||||
// Therefore disable tests that check _FusedConv2D, when building with ROCm
|
||||
|
||||
#ifndef TENSORFLOW_USE_ROCM
|
||||
// -------------------------------------------------------------------------- //
|
||||
// Conv2D + BiasAdd + {Activation} //
|
||||
// -------------------------------------------------------------------------- //
|
||||
@ -1165,4 +1169,5 @@ using FusedBatchNormDataTypes = ::testing::Types<float>;
|
||||
INSTANTIATE_TYPED_TEST_SUITE_P(Test, FusedConv2DWithBatchNormOpTest,
|
||||
FusedBatchNormDataTypes);
|
||||
|
||||
#endif // TENSORFLOW_USE_ROCM
|
||||
} // namespace tensorflow
|
||||
|
@ -753,6 +753,13 @@ class ConvolutionDeltaOrthogonalInitializerTest(test.TestCase):
|
||||
else:
|
||||
shape = [4, 16, 16, 16, 64]
|
||||
convolution = convolutional.conv3d
|
||||
|
||||
if test.is_built_with_rocm():
|
||||
# This subtest triggers a known bug in ROCm runtime code
|
||||
# The bug has been fixed and will be available in ROCm 2.7
|
||||
# Re-enable this test once ROCm 2.7 is released
|
||||
continue
|
||||
|
||||
inputs = random_ops.random_normal(shape, dtype=dtype)
|
||||
inputs_2norm = linalg_ops.norm(inputs)
|
||||
outputs = convolution(
|
||||
|
Loading…
Reference in New Issue
Block a user