Add module aliases for v2 optimizers tf.optimizers = tf.keras.optimizers

PiperOrigin-RevId: 233119697
This commit is contained in:
Pavithra Vijay 2019-02-08 13:48:35 -08:00 committed by TensorFlower Gardener
parent 414296b1a4
commit fa4ac2ba72
18 changed files with 743 additions and 0 deletions

View File

@ -115,5 +115,6 @@ except NameError:
if hasattr(_current_module, 'keras'):
losses = keras.losses
metrics = keras.metrics
optimizers = keras.optimizers
# pylint: enable=undefined-variable

View File

@ -48,3 +48,4 @@ _current_module = _sys.modules[__name__]
if hasattr(_current_module, 'keras'):
losses = keras.losses
metrics = keras.metrics
optimizers = keras.optimizers

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.Adadelta"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.adadelta.Adadelta\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.95\', \'1e-07\', \'Adadelta\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.Adagrad"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.adagrad.Adagrad\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'initial_accumulator_value\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.1\', \'1e-07\', \'Adagrad\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.Adam"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.adam.Adam\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'amsgrad\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'False\', \'Adam\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.Adamax"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.adamax.Adamax\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Adamax\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.Nadam"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.nadam.Nadam\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'beta_1\', \'beta_2\', \'epsilon\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.999\', \'1e-07\', \'Nadam\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,70 @@
path: "tensorflow.optimizers.Optimizer"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'name\'], varargs=None, keywords=kwargs, defaults=None"
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.RMSprop"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.rmsprop.RMSprop\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'rho\', \'momentum\', \'epsilon\', \'centered\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.9\', \'0.0\', \'1e-07\', \'False\', \'RMSprop\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,71 @@
path: "tensorflow.optimizers.SGD"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.gradient_descent.SGD\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.optimizer_v2.OptimizerV2\'>"
is_instance: "<class \'tensorflow.python.training.checkpointable.base.Checkpointable\'>"
is_instance: "<type \'object\'>"
member {
name: "iterations"
mtype: "<type \'property\'>"
}
member {
name: "weights"
mtype: "<type \'property\'>"
}
member_method {
name: "__init__"
argspec: "args=[\'self\', \'learning_rate\', \'momentum\', \'nesterov\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'0.001\', \'0.0\', \'False\', \'SGD\'], "
}
member_method {
name: "add_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\', \'initializer\'], varargs=None, keywords=None, defaults=[\'zeros\'], "
}
member_method {
name: "add_weight"
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'trainable\', \'synchronization\', \'aggregation\'], varargs=None, keywords=None, defaults=[\'None\', \'zeros\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
}
member_method {
name: "apply_gradients"
argspec: "args=[\'self\', \'grads_and_vars\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_gradients"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot"
argspec: "args=[\'self\', \'var\', \'slot_name\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_slot_names"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_updates"
argspec: "args=[\'self\', \'loss\', \'params\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_weights"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "minimize"
argspec: "args=[\'self\', \'loss\', \'var_list\', \'grad_loss\', \'name\'], varargs=None, keywords=None, defaults=[\'None\', \'None\'], "
}
member_method {
name: "set_weights"
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "variables"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,51 @@
path: "tensorflow.optimizers"
tf_module {
member {
name: "Adadelta"
mtype: "<type \'type\'>"
}
member {
name: "Adagrad"
mtype: "<type \'type\'>"
}
member {
name: "Adam"
mtype: "<type \'type\'>"
}
member {
name: "Adamax"
mtype: "<type \'type\'>"
}
member {
name: "Nadam"
mtype: "<type \'type\'>"
}
member {
name: "Optimizer"
mtype: "<type \'type\'>"
}
member {
name: "RMSprop"
mtype: "<type \'type\'>"
}
member {
name: "SGD"
mtype: "<type \'type\'>"
}
member {
name: "schedules"
mtype: "<type \'module\'>"
}
member_method {
name: "deserialize"
argspec: "args=[\'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "get"
argspec: "args=[\'identifier\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "serialize"
argspec: "args=[\'optimizer\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,18 @@
path: "tensorflow.optimizers.schedules.ExponentialDecay"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.ExponentialDecay\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.LearningRateSchedule\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'decay_rate\', \'staircase\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,18 @@
path: "tensorflow.optimizers.schedules.InverseTimeDecay"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.InverseTimeDecay\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.LearningRateSchedule\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'decay_rate\', \'staircase\', \'name\'], varargs=None, keywords=None, defaults=[\'False\', \'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,16 @@
path: "tensorflow.optimizers.schedules.LearningRateSchedule"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.LearningRateSchedule\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,18 @@
path: "tensorflow.optimizers.schedules.PiecewiseConstantDecay"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.PiecewiseConstantDecay\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.LearningRateSchedule\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'boundaries\', \'values\', \'name\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,18 @@
path: "tensorflow.optimizers.schedules.PolynomialDecay"
tf_class {
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.PolynomialDecay\'>"
is_instance: "<class \'tensorflow.python.keras.optimizer_v2.learning_rate_schedule.LearningRateSchedule\'>"
is_instance: "<type \'object\'>"
member_method {
name: "__init__"
argspec: "args=[\'self\', \'initial_learning_rate\', \'decay_steps\', \'end_learning_rate\', \'power\', \'cycle\', \'name\'], varargs=None, keywords=None, defaults=[\'0.0001\', \'1.0\', \'False\', \'None\'], "
}
member_method {
name: "from_config"
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
}
member_method {
name: "get_config"
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -0,0 +1,31 @@
path: "tensorflow.optimizers.schedules"
tf_module {
member {
name: "ExponentialDecay"
mtype: "<type \'type\'>"
}
member {
name: "InverseTimeDecay"
mtype: "<type \'type\'>"
}
member {
name: "LearningRateSchedule"
mtype: "<type \'type\'>"
}
member {
name: "PiecewiseConstantDecay"
mtype: "<type \'type\'>"
}
member {
name: "PolynomialDecay"
mtype: "<type \'type\'>"
}
member_method {
name: "deserialize"
argspec: "args=[\'config\', \'custom_objects\'], varargs=None, keywords=None, defaults=[\'None\'], "
}
member_method {
name: "serialize"
argspec: "args=[\'learning_rate_schedule\'], varargs=None, keywords=None, defaults=None"
}
}

View File

@ -232,6 +232,10 @@ tf_module {
name: "ones_initializer"
mtype: "<type \'type\'>"
}
member {
name: "optimizers"
mtype: "<type \'module\'>"
}
member {
name: "qint16"
mtype: "<class \'tensorflow.python.framework.dtypes.DType\'>"