Fix preprocessing layers signatures.
PiperOrigin-RevId: 342531890 Change-Id: I543fcf6057e03647bf64c7dae7252194f329a31c
This commit is contained in:
parent
ce0d0a458c
commit
fa25e04b1f
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras categorical preprocessing layers."""
|
||||
"""Keras category crossing preprocessing layers."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -12,7 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras text CategoryEncoding preprocessing layer."""
|
||||
"""Keras CategoryEncoding preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -86,8 +87,7 @@ class CategoryEncoding(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
[0. , 0.2, 0.3, 0. ],
|
||||
[0. , 0.2, 0. , 0.4]])>
|
||||
|
||||
|
||||
Attributes:
|
||||
Arguments:
|
||||
max_tokens: The maximum size of the vocabulary for this layer. If None,
|
||||
there is no cap on the size of the vocabulary.
|
||||
output_mode: Specification for the output of the layer.
|
||||
|
@ -12,7 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras preprocessing layers."""
|
||||
"""Keras discretization preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras categorical preprocessing layers."""
|
||||
"""Keras hashing preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -12,7 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras text vectorization preprocessing layer."""
|
||||
"""Keras index lookup preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -57,7 +58,7 @@ class IndexLookup(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
vocabulary size, the most frequent terms will be used to create the
|
||||
vocabulary.
|
||||
|
||||
Attributes:
|
||||
Arguments:
|
||||
max_tokens: The maximum size of the vocabulary for this layer. If None,
|
||||
there is no cap on the size of the vocabulary. Note that this vocabulary
|
||||
includes the OOV and mask tokens, so the effective number of tokens is
|
||||
|
@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras string lookup preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -39,7 +40,7 @@ class IntegerLookup(index_lookup.IndexLookup):
|
||||
vocabulary size, the most frequent terms will be used to create the
|
||||
vocabulary.
|
||||
|
||||
Attributes:
|
||||
Arguments:
|
||||
max_values: The maximum size of the vocabulary for this layer. If None,
|
||||
there is no cap on the size of the vocabulary. Note that this vocabulary
|
||||
includes the OOV and mask values, so the effective number of values is
|
||||
|
@ -12,7 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras preprocessing layers."""
|
||||
"""Normalization preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -59,7 +60,7 @@ class Normalization(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
as the layer's weights. `adapt` should be called before `fit`, `evaluate`,
|
||||
or `predict`.
|
||||
|
||||
Attributes:
|
||||
Arguments:
|
||||
axis: Integer or tuple of integers, the axis or axes that should be
|
||||
"kept". These axes are not be summed over when calculating the
|
||||
normalization statistics. By default the last axis, the `features` axis
|
||||
@ -102,11 +103,7 @@ class Normalization(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
[ 0. ]], dtype=float32)>
|
||||
"""
|
||||
|
||||
def __init__(self, axis=-1, dtype=None, mean=None, variance=None, **kwargs):
|
||||
# This ensures that if the value of K.floatx() changes after file-loading
|
||||
# time, the dtype value will change to reflect it.
|
||||
dtype = dtype or K.floatx()
|
||||
|
||||
def __init__(self, axis=-1, mean=None, variance=None, **kwargs):
|
||||
# Standardize `axis` to a tuple.
|
||||
if axis is None:
|
||||
axis = ()
|
||||
@ -116,7 +113,7 @@ class Normalization(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
axis = tuple(axis)
|
||||
|
||||
super(Normalization, self).__init__(
|
||||
combiner=_NormalizingCombiner(axis), dtype=dtype, **kwargs)
|
||||
combiner=_NormalizingCombiner(axis), **kwargs)
|
||||
base_preprocessing_layer.keras_kpl_gauge.get_cell('Normalization').set(True)
|
||||
|
||||
if 0 in axis:
|
||||
|
@ -27,7 +27,7 @@ from tensorflow.python.util.tf_export import keras_export
|
||||
@keras_export(v1=['keras.layers.experimental.preprocessing.Normalization'])
|
||||
class Normalization(normalization.Normalization, CombinerPreprocessingLayer):
|
||||
|
||||
def __init__(self, axis=-1, dtype=None, **kwargs):
|
||||
super(Normalization, self).__init__(axis, dtype, **kwargs)
|
||||
def __init__(self, axis=-1, **kwargs):
|
||||
super(Normalization, self).__init__(axis, **kwargs)
|
||||
base_preprocessing_layer.keras_kpl_gauge.get_cell(
|
||||
'Normalization v1').set(True)
|
||||
|
@ -12,7 +12,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras categorical preprocessing layers."""
|
||||
"""Keras reduction layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
|
||||
from __future__ import absolute_import
|
||||
|
@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras string lookup preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -39,7 +40,7 @@ class StringLookup(index_lookup.IndexLookup):
|
||||
vocabulary size, the most frequent terms will be used to create the
|
||||
vocabulary.
|
||||
|
||||
Attributes:
|
||||
Arguments:
|
||||
max_tokens: The maximum size of the vocabulary for this layer. If None,
|
||||
there is no cap on the size of the vocabulary. Note that this vocabulary
|
||||
includes the OOV and mask tokens, so the effective number of tokens is
|
||||
|
@ -13,6 +13,7 @@
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Keras text vectorization preprocessing layer."""
|
||||
# pylint: disable=g-classes-have-attributes
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
@ -117,7 +118,7 @@ class TextVectorization(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
["another", "string", "to", "split"]]`. This makes the callable site
|
||||
natively compatible with `tf.strings.split()`.
|
||||
|
||||
Attributes:
|
||||
Arguments:
|
||||
max_tokens: The maximum size of the vocabulary for this layer. If None,
|
||||
there is no cap on the size of the vocabulary. Note that this vocabulary
|
||||
contains 1 OOV token, so the effective number of tokens is `(max_tokens -
|
||||
@ -162,6 +163,7 @@ class TextVectorization(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
times, an error will be thrown.
|
||||
|
||||
Example:
|
||||
|
||||
This example instantiates a TextVectorization layer that lowercases text,
|
||||
splits on whitespace, strips punctuation, and outputs integer vocab indices.
|
||||
|
||||
@ -202,6 +204,7 @@ class TextVectorization(base_preprocessing_layer.CombinerPreprocessingLayer):
|
||||
[1, 3, 0, 0]])
|
||||
|
||||
Example:
|
||||
|
||||
This example instantiates a TextVectorization layer by passing a list
|
||||
of vocabulary terms to the layer's __init__ method.
|
||||
|
||||
|
@ -133,7 +133,7 @@ tf_class {
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'axis\', \'dtype\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\'], "
|
||||
argspec: "args=[\'self\', \'axis\'], varargs=None, keywords=kwargs, defaults=[\'-1\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "adapt"
|
||||
|
@ -131,7 +131,7 @@ tf_class {
|
||||
}
|
||||
member_method {
|
||||
name: "__init__"
|
||||
argspec: "args=[\'self\', \'axis\', \'dtype\', \'mean\', \'variance\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\', \'None\', \'None\'], "
|
||||
argspec: "args=[\'self\', \'axis\', \'mean\', \'variance\'], varargs=None, keywords=kwargs, defaults=[\'-1\', \'None\', \'None\'], "
|
||||
}
|
||||
member_method {
|
||||
name: "adapt"
|
||||
|
Loading…
x
Reference in New Issue
Block a user