Internal change
PiperOrigin-RevId: 340297114 Change-Id: Ib67ea44b245f8fd66cd17c7b68f26260391793a9
This commit is contained in:
parent
2ae6b87fe5
commit
f8ba2a8d9b
@ -33,12 +33,15 @@ import time
|
||||
import numpy as np
|
||||
import six
|
||||
|
||||
from tensorflow.core.framework import summary_pb2
|
||||
from tensorflow.python.data.ops import iterator_ops
|
||||
from tensorflow.python.distribute import collective_all_reduce_strategy
|
||||
from tensorflow.python.distribute import distribute_lib
|
||||
from tensorflow.python.distribute import mirrored_strategy
|
||||
from tensorflow.python.distribute import tpu_strategy
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import constant_op
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.keras import backend as K
|
||||
from tensorflow.python.keras.distribute import distributed_file_utils
|
||||
@ -1920,6 +1923,51 @@ class LearningRateScheduler(Callback):
|
||||
logs['lr'] = K.get_value(self.model.optimizer.lr)
|
||||
|
||||
|
||||
def keras_model_summary(name, data, step=None):
|
||||
"""Writes a Keras model as JSON to as a Summary.
|
||||
|
||||
Writing the Keras model configuration allows the TensorBoard graph plugin to
|
||||
render a conceptual graph, as opposed to graph of ops. In case the model fails
|
||||
to serialize as JSON, it ignores and returns False.
|
||||
|
||||
Args:
|
||||
name: A name for this summary. The summary tag used for TensorBoard will be
|
||||
this name prefixed by any active name scopes.
|
||||
data: A Keras Model to write.
|
||||
step: Explicit `int64`-castable monotonic step value for this summary. If
|
||||
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
|
||||
not be None.
|
||||
|
||||
Returns:
|
||||
True on success, or False if no summary was written because no default
|
||||
summary writer was available.
|
||||
|
||||
Raises:
|
||||
ValueError: if a default writer exists, but no step was provided and
|
||||
`tf.summary.experimental.get_step()` is None.
|
||||
"""
|
||||
summary_metadata = summary_pb2.SummaryMetadata()
|
||||
# Hard coding a plugin name. Please refer to go/tb-plugin-name-hardcode for
|
||||
# the rationale.
|
||||
summary_metadata.plugin_data.plugin_name = 'graph_keras_model'
|
||||
# version number = 1
|
||||
summary_metadata.plugin_data.content = b'1'
|
||||
|
||||
try:
|
||||
json_string = data.to_json()
|
||||
except Exception as exc: # pylint: disable=broad-except
|
||||
# An exception should not break a model code.
|
||||
logging.warn('Model failed to serialize as JSON. Ignoring... %s', exc)
|
||||
return False
|
||||
|
||||
with summary_ops_v2.summary_scope(name, 'graph_keras_model',
|
||||
[data, step]) as (tag, _):
|
||||
with ops.device('cpu:0'):
|
||||
tensor = constant_op.constant(json_string, dtype=dtypes.string)
|
||||
return summary_ops_v2.write(
|
||||
tag=tag, tensor=tensor, step=step, metadata=summary_metadata)
|
||||
|
||||
|
||||
@keras_export('keras.callbacks.TensorBoard', v1=[])
|
||||
class TensorBoard(Callback, version_utils.TensorBoardVersionSelector):
|
||||
# pylint: disable=line-too-long
|
||||
@ -2164,7 +2212,7 @@ class TensorBoard(Callback, version_utils.TensorBoardVersionSelector):
|
||||
self.model._is_graph_network or # pylint: disable=protected-access
|
||||
self.model.__class__.__name__ == 'Sequential') # pylint: disable=protected-access
|
||||
if summary_writable:
|
||||
summary_ops_v2.keras_model('keras', self.model, step=0)
|
||||
keras_model_summary('keras', self.model, step=0)
|
||||
|
||||
def _configure_embeddings(self):
|
||||
"""Configure the Projector for embeddings."""
|
||||
|
@ -33,20 +33,25 @@ from absl.testing import parameterized
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.core.framework import summary_pb2
|
||||
from tensorflow.core.util import event_pb2
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.data.ops import dataset_ops
|
||||
from tensorflow.python.data.ops import readers
|
||||
from tensorflow.python.eager import context
|
||||
from tensorflow.python.framework import ops
|
||||
from tensorflow.python.framework import random_seed
|
||||
from tensorflow.python.keras import keras_parameterized
|
||||
from tensorflow.python.keras import testing_utils
|
||||
from tensorflow.python.keras.engine import sequential
|
||||
from tensorflow.python.keras.layers import Activation
|
||||
from tensorflow.python.keras.layers import Dense
|
||||
from tensorflow.python.keras.optimizer_v2 import gradient_descent
|
||||
from tensorflow.python.keras.optimizer_v2 import learning_rate_schedule
|
||||
from tensorflow.python.keras.utils import np_utils
|
||||
from tensorflow.python.ops import array_ops
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow.python.ops import summary_ops_v2
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
from tensorflow.python.saved_model import save_options as save_options_lib
|
||||
@ -2617,5 +2622,117 @@ class MostRecentlyModifiedFileMatchingPatternTest(test.TestCase):
|
||||
ckpt_file_path)
|
||||
|
||||
|
||||
class SummaryOpsTest(test.TestCase):
|
||||
|
||||
def tearDown(self):
|
||||
super(SummaryOpsTest, self).tearDown()
|
||||
summary_ops_v2.trace_off()
|
||||
|
||||
def keras_model(self, *args, **kwargs):
|
||||
logdir = self.get_temp_dir()
|
||||
writer = summary_ops_v2.create_file_writer_v2(logdir)
|
||||
with writer.as_default():
|
||||
keras.callbacks.keras_model_summary(*args, **kwargs)
|
||||
writer.close()
|
||||
events = events_from_logdir(logdir)
|
||||
# The first event contains no summary values. The written content goes to
|
||||
# the second event.
|
||||
return events[1]
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel(self):
|
||||
model = keras.Sequential(
|
||||
[Dense(10, input_shape=(100,)),
|
||||
Activation('relu', name='my_relu')])
|
||||
event = self.keras_model(name='my_name', data=model, step=1)
|
||||
first_val = event.summary.value[0]
|
||||
self.assertEqual(model.to_json(), first_val.tensor.string_val[0].decode())
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel_usesDefaultStep(self):
|
||||
model = keras.Sequential(
|
||||
[Dense(10, input_shape=(100,)),
|
||||
Activation('relu', name='my_relu')])
|
||||
try:
|
||||
summary_ops_v2.set_step(42)
|
||||
event = self.keras_model(name='my_name', data=model)
|
||||
self.assertEqual(42, event.step)
|
||||
finally:
|
||||
# Reset to default state for other tests.
|
||||
summary_ops_v2.set_step(None)
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel_subclass(self):
|
||||
|
||||
class SimpleSubclass(keras.Model):
|
||||
|
||||
def __init__(self):
|
||||
super(SimpleSubclass, self).__init__(name='subclass')
|
||||
self.dense = Dense(10, input_shape=(100,))
|
||||
self.activation = Activation('relu', name='my_relu')
|
||||
|
||||
def call(self, inputs):
|
||||
x = self.dense(inputs)
|
||||
return self.activation(x)
|
||||
|
||||
model = SimpleSubclass()
|
||||
with test.mock.patch.object(logging, 'warn') as mock_log:
|
||||
self.assertFalse(
|
||||
keras.callbacks.keras_model_summary(
|
||||
name='my_name', data=model, step=1))
|
||||
self.assertRegex(
|
||||
str(mock_log.call_args), 'Model failed to serialize as JSON.')
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel_otherExceptions(self):
|
||||
model = keras.Sequential()
|
||||
|
||||
with test.mock.patch.object(model, 'to_json') as mock_to_json:
|
||||
with test.mock.patch.object(logging, 'warn') as mock_log:
|
||||
mock_to_json.side_effect = Exception('oops')
|
||||
self.assertFalse(
|
||||
keras.callbacks.keras_model_summary(
|
||||
name='my_name', data=model, step=1))
|
||||
self.assertRegex(
|
||||
str(mock_log.call_args),
|
||||
'Model failed to serialize as JSON. Ignoring')
|
||||
|
||||
|
||||
def events_from_file(filepath):
|
||||
"""Returns all events in a single event file.
|
||||
|
||||
Args:
|
||||
filepath: Path to the event file.
|
||||
|
||||
Returns:
|
||||
A list of all tf.Event protos in the event file.
|
||||
"""
|
||||
result = []
|
||||
raw_dataset = readers.TFRecordDatasetV2([filepath])
|
||||
for raw_record in raw_dataset.take(10):
|
||||
event = event_pb2.Event()
|
||||
event.ParseFromString(raw_record.numpy())
|
||||
result.append(event)
|
||||
return result
|
||||
|
||||
|
||||
def events_from_logdir(logdir):
|
||||
"""Returns all events in the single eventfile in logdir.
|
||||
|
||||
Args:
|
||||
logdir: The directory in which the single event file is sought.
|
||||
|
||||
Returns:
|
||||
A list of all tf.Event protos from the single event file.
|
||||
|
||||
Raises:
|
||||
AssertionError: If logdir does not contain exactly one file.
|
||||
"""
|
||||
assert gfile.Exists(logdir)
|
||||
files = gfile.ListDirectory(logdir)
|
||||
assert len(files) == 1, 'Found not exactly one file in logdir: %s' % files
|
||||
return events_from_file(os.path.join(logdir, files[0]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
||||
|
@ -279,23 +279,6 @@ tf_py_test(
|
||||
],
|
||||
)
|
||||
|
||||
cuda_py_test(
|
||||
name = "summary_ops_test",
|
||||
size = "small",
|
||||
srcs = ["summary_ops_test.py"],
|
||||
deps = [
|
||||
"//tensorflow/core:protos_all_py",
|
||||
"//tensorflow/python:client_testlib",
|
||||
"//tensorflow/python:framework_test_lib",
|
||||
"//tensorflow/python:lib",
|
||||
"//tensorflow/python:platform",
|
||||
"//tensorflow/python:summary_ops_v2",
|
||||
"//tensorflow/python/keras:testing_utils",
|
||||
"//tensorflow/python/keras/engine",
|
||||
"//tensorflow/python/keras/layers:core",
|
||||
],
|
||||
)
|
||||
|
||||
tf_py_test(
|
||||
name = "saved_model_test",
|
||||
size = "small",
|
||||
|
@ -1,147 +0,0 @@
|
||||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for V2 summary ops from summary_ops_v2."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
|
||||
from tensorflow.core.util import event_pb2
|
||||
from tensorflow.python.keras import testing_utils
|
||||
from tensorflow.python.keras.engine.sequential import Sequential
|
||||
from tensorflow.python.keras.engine.training import Model
|
||||
from tensorflow.python.keras.layers.core import Activation
|
||||
from tensorflow.python.keras.layers.core import Dense
|
||||
from tensorflow.python.lib.io import tf_record
|
||||
from tensorflow.python.ops import summary_ops_v2 as summary_ops
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
|
||||
|
||||
class SummaryOpsTest(test.TestCase):
|
||||
|
||||
def tearDown(self):
|
||||
super(SummaryOpsTest, self).tearDown()
|
||||
summary_ops.trace_off()
|
||||
|
||||
def keras_model(self, *args, **kwargs):
|
||||
logdir = self.get_temp_dir()
|
||||
writer = summary_ops.create_file_writer_v2(logdir)
|
||||
with writer.as_default():
|
||||
summary_ops.keras_model(*args, **kwargs)
|
||||
writer.close()
|
||||
events = events_from_logdir(logdir)
|
||||
# The first event contains no summary values. The written content goes to
|
||||
# the second event.
|
||||
return events[1]
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel(self):
|
||||
model = Sequential(
|
||||
[Dense(10, input_shape=(100,)),
|
||||
Activation('relu', name='my_relu')])
|
||||
event = self.keras_model(name='my_name', data=model, step=1)
|
||||
first_val = event.summary.value[0]
|
||||
self.assertEqual(model.to_json(), first_val.tensor.string_val[0].decode())
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel_usesDefaultStep(self):
|
||||
model = Sequential(
|
||||
[Dense(10, input_shape=(100,)),
|
||||
Activation('relu', name='my_relu')])
|
||||
try:
|
||||
summary_ops.set_step(42)
|
||||
event = self.keras_model(name='my_name', data=model)
|
||||
self.assertEqual(42, event.step)
|
||||
finally:
|
||||
# Reset to default state for other tests.
|
||||
summary_ops.set_step(None)
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel_subclass(self):
|
||||
|
||||
class SimpleSubclass(Model):
|
||||
|
||||
def __init__(self):
|
||||
super(SimpleSubclass, self).__init__(name='subclass')
|
||||
self.dense = Dense(10, input_shape=(100,))
|
||||
self.activation = Activation('relu', name='my_relu')
|
||||
|
||||
def call(self, inputs):
|
||||
x = self.dense(inputs)
|
||||
return self.activation(x)
|
||||
|
||||
model = SimpleSubclass()
|
||||
with test.mock.patch.object(logging, 'warn') as mock_log:
|
||||
self.assertFalse(
|
||||
summary_ops.keras_model(name='my_name', data=model, step=1))
|
||||
self.assertRegex(
|
||||
str(mock_log.call_args), 'Model failed to serialize as JSON.')
|
||||
|
||||
@testing_utils.run_v2_only
|
||||
def testKerasModel_otherExceptions(self):
|
||||
model = Sequential()
|
||||
|
||||
with test.mock.patch.object(model, 'to_json') as mock_to_json:
|
||||
with test.mock.patch.object(logging, 'warn') as mock_log:
|
||||
mock_to_json.side_effect = Exception('oops')
|
||||
self.assertFalse(
|
||||
summary_ops.keras_model(name='my_name', data=model, step=1))
|
||||
self.assertRegex(
|
||||
str(mock_log.call_args),
|
||||
'Model failed to serialize as JSON. Ignoring... oops')
|
||||
|
||||
|
||||
def events_from_file(filepath):
|
||||
"""Returns all events in a single event file.
|
||||
|
||||
Args:
|
||||
filepath: Path to the event file.
|
||||
|
||||
Returns:
|
||||
A list of all tf.Event protos in the event file.
|
||||
"""
|
||||
records = list(tf_record.tf_record_iterator(filepath))
|
||||
result = []
|
||||
for r in records:
|
||||
event = event_pb2.Event()
|
||||
event.ParseFromString(r)
|
||||
result.append(event)
|
||||
return result
|
||||
|
||||
|
||||
def events_from_logdir(logdir):
|
||||
"""Returns all events in the single eventfile in logdir.
|
||||
|
||||
Args:
|
||||
logdir: The directory in which the single event file is sought.
|
||||
|
||||
Returns:
|
||||
A list of all tf.Event protos from the single event file.
|
||||
|
||||
Raises:
|
||||
AssertionError: If logdir does not contain exactly one file.
|
||||
"""
|
||||
assert gfile.Exists(logdir)
|
||||
files = gfile.ListDirectory(logdir)
|
||||
assert len(files) == 1, 'Found not exactly one file in logdir: %s' % files
|
||||
return events_from_file(os.path.join(logdir, files[0]))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
@ -1202,53 +1202,6 @@ def run_metadata_graphs(name, data, step=None):
|
||||
metadata=summary_metadata)
|
||||
|
||||
|
||||
def keras_model(name, data, step=None):
|
||||
"""Writes a Keras model as JSON to as a Summary.
|
||||
|
||||
Writing the Keras model configuration allows the TensorBoard graph plugin to
|
||||
render a conceptual graph, as opposed to graph of ops. In case the model fails
|
||||
to serialize as JSON, it ignores and returns False.
|
||||
|
||||
Args:
|
||||
name: A name for this summary. The summary tag used for TensorBoard will be
|
||||
this name prefixed by any active name scopes.
|
||||
data: A Keras Model to write.
|
||||
step: Explicit `int64`-castable monotonic step value for this summary. If
|
||||
omitted, this defaults to `tf.summary.experimental.get_step()`, which must
|
||||
not be None.
|
||||
|
||||
Returns:
|
||||
True on success, or False if no summary was written because no default
|
||||
summary writer was available.
|
||||
|
||||
Raises:
|
||||
ValueError: if a default writer exists, but no step was provided and
|
||||
`tf.summary.experimental.get_step()` is None.
|
||||
"""
|
||||
summary_metadata = summary_pb2.SummaryMetadata()
|
||||
# Hard coding a plugin name. Please refer to go/tb-plugin-name-hardcode for
|
||||
# the rationale.
|
||||
summary_metadata.plugin_data.plugin_name = "graph_keras_model"
|
||||
# version number = 1
|
||||
summary_metadata.plugin_data.content = b"1"
|
||||
|
||||
try:
|
||||
json_string = data.to_json()
|
||||
except Exception as exc: # pylint: disable=broad-except
|
||||
# An exception should not break a model code.
|
||||
logging.warn("Model failed to serialize as JSON. Ignoring... %s" % exc)
|
||||
return False
|
||||
|
||||
with summary_scope(name, "graph_keras_model", [data, step]) as (tag, _):
|
||||
with ops.device("cpu:0"):
|
||||
tensor = constant_op.constant(json_string, dtype=dtypes.string)
|
||||
return write(
|
||||
tag=tag,
|
||||
tensor=tensor,
|
||||
step=step,
|
||||
metadata=summary_metadata)
|
||||
|
||||
|
||||
_TraceContext = collections.namedtuple("TraceContext", ("graph", "profiler"))
|
||||
_current_trace_context_lock = threading.Lock()
|
||||
_current_trace_context = None
|
||||
|
Loading…
Reference in New Issue
Block a user