Add a Python fuzzer for tf.raw_ops.SparseCountSparseOutput
.
PiperOrigin-RevId: 359381561 Change-Id: I546fd8791327fd9949b7b282b2f1d15fd7b47229
This commit is contained in:
parent
c023a82916
commit
f7d8f16fc5
@ -166,3 +166,10 @@ tf_py_fuzz_target(
|
||||
tags = ["notap"], # Run in OSS only.
|
||||
deps = [":python_fuzzing"],
|
||||
)
|
||||
|
||||
tf_py_fuzz_target(
|
||||
name = "sparseCountSparseOutput_fuzz",
|
||||
srcs = ["sparseCountSparseOutput_fuzz.py"],
|
||||
tags = ["notap"], # Run in OSS only.
|
||||
deps = [":python_fuzzing"],
|
||||
)
|
||||
|
65
tensorflow/security/fuzzing/sparseCountSparseOutput_fuzz.py
Normal file
65
tensorflow/security/fuzzing/sparseCountSparseOutput_fuzz.py
Normal file
@ -0,0 +1,65 @@
|
||||
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""This is a Python API fuzzer for tf.raw_ops.SparseCountSparseOutput."""
|
||||
import sys
|
||||
import atheris_no_libfuzzer as atheris
|
||||
from python_fuzzing import FuzzingHelper
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
def TestOneInput(input_bytes):
|
||||
"""Test randomized integer fuzzing input for tf.raw_ops.SparseCountSparseOutput."""
|
||||
fh = FuzzingHelper(input_bytes)
|
||||
|
||||
shape1 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
|
||||
shape2 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
|
||||
shape3 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
|
||||
shape4 = fh.get_int_list(min_length=0, max_length=8, min_int=0, max_int=8)
|
||||
|
||||
seed = fh.get_int()
|
||||
indices = tf.random.uniform(
|
||||
shape=shape1, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
|
||||
values = tf.random.uniform(
|
||||
shape=shape2, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
|
||||
dense_shape = tf.random.uniform(
|
||||
shape=shape3, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
|
||||
weights = tf.random.uniform(
|
||||
shape=shape4, minval=0, maxval=1000, dtype=tf.int64, seed=seed)
|
||||
|
||||
binary_output = fh.get_bool()
|
||||
minlength = fh.get_int()
|
||||
maxlength = fh.get_int()
|
||||
name = fh.get_string()
|
||||
try:
|
||||
_, _, _, = tf.raw_ops.SparseCountSparseOutput(
|
||||
indices=indices,
|
||||
values=values,
|
||||
dense_shape=dense_shape,
|
||||
weights=weights,
|
||||
binary_output=binary_output,
|
||||
minlength=minlength,
|
||||
maxlength=maxlength,
|
||||
name=name)
|
||||
except tf.errors.InvalidArgumentError:
|
||||
pass
|
||||
|
||||
|
||||
def main():
|
||||
atheris.Setup(sys.argv, TestOneInput, enable_python_coverage=True)
|
||||
atheris.Fuzz()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user