Python wrapper for the Graph Transform Tool
Change: 145009203
This commit is contained in:
parent
fa82a88606
commit
f736991fd3
tensorflow
python
tools/graph_transforms
@ -2292,6 +2292,7 @@ tf_py_wrap_cc(
|
||||
"util/port.i",
|
||||
"util/py_checkpoint_reader.i",
|
||||
"util/stat_summarizer.i",
|
||||
"util/transform_graph.i",
|
||||
],
|
||||
deps = [
|
||||
":cpp_shape_inference",
|
||||
@ -2310,6 +2311,7 @@ tf_py_wrap_cc(
|
||||
"//tensorflow/core:lib",
|
||||
"//tensorflow/core/debug",
|
||||
"//tensorflow/core/distributed_runtime:server_lib",
|
||||
"//tensorflow/tools/graph_transforms:transform_graph_lib",
|
||||
"//tensorflow/tools/tfprof/internal:print_model_analysis",
|
||||
"//util/python:python_headers",
|
||||
] + tf_additional_lib_deps() + tf_additional_plugin_deps(),
|
||||
|
@ -38,3 +38,5 @@ limitations under the License.
|
||||
|
||||
%include "tensorflow/python/framework/cpp_shape_inference.i"
|
||||
%include "tensorflow/python/util/kernel_registry.i"
|
||||
|
||||
%include "tensorflow/python/util/transform_graph.i"
|
||||
|
86
tensorflow/python/util/transform_graph.i
Normal file
86
tensorflow/python/util/transform_graph.i
Normal file
@ -0,0 +1,86 @@
|
||||
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
%include <std_string.i>
|
||||
%include "tensorflow/python/lib/core/strings.i"
|
||||
%include "tensorflow/python/platform/base.i"
|
||||
|
||||
%{
|
||||
#include "tensorflow/core/lib/core/status.h"
|
||||
#include "tensorflow/core/util/stat_summarizer.h"
|
||||
#include "tensorflow/python/lib/core/py_func.h"
|
||||
|
||||
#include "tensorflow/core/framework/graph.pb.h"
|
||||
#include "tensorflow/core/framework/step_stats.pb.h"
|
||||
#include "tensorflow/tools/graph_transforms/transform_graph.h"
|
||||
%}
|
||||
|
||||
%ignoreall
|
||||
|
||||
%unignore tensorflow;
|
||||
%unignore TransformGraphWithStringInputs;
|
||||
|
||||
|
||||
%{
|
||||
string TransformGraphWithStringInputs(string graph_def_string,
|
||||
string inputs_string,
|
||||
string outputs_string,
|
||||
string transforms_string,
|
||||
TF_Status* out_status) {
|
||||
tensorflow::GraphDef graph_def;
|
||||
if (!graph_def.ParseFromString(graph_def_string)) {
|
||||
Set_TF_Status_from_Status(out_status, tensorflow::errors::InvalidArgument(
|
||||
"Couldn't interpret input as a GraphDef"));
|
||||
return "";
|
||||
}
|
||||
|
||||
tensorflow::graph_transforms::TransformParameters params_list;
|
||||
tensorflow::Status parse_status =
|
||||
tensorflow::graph_transforms::ParseTransformParameters(
|
||||
transforms_string, ¶ms_list);
|
||||
if (!parse_status.ok()) {
|
||||
tensorflow::Set_TF_Status_from_Status(out_status, parse_status);
|
||||
return "";
|
||||
}
|
||||
std::vector<string> inputs = tensorflow::str_util::Split(inputs_string, ',');
|
||||
std::vector<string> outputs =
|
||||
tensorflow::str_util::Split(outputs_string, ',');
|
||||
|
||||
tensorflow::Status transform_status =
|
||||
tensorflow::graph_transforms::TransformGraph(
|
||||
inputs, outputs, params_list, &graph_def);
|
||||
if (!transform_status.ok()) {
|
||||
tensorflow::Set_TF_Status_from_Status(out_status, transform_status);
|
||||
return "";
|
||||
}
|
||||
string result;
|
||||
if (!graph_def.SerializeToString(&result)) {
|
||||
Set_TF_Status_from_Status(out_status, tensorflow::errors::InvalidArgument(
|
||||
"Couldn't serialize output as a GraphDef"));
|
||||
return "";
|
||||
}
|
||||
Set_TF_Status_from_Status(out_status, tensorflow::Status::OK());
|
||||
return result;
|
||||
}
|
||||
%}
|
||||
|
||||
|
||||
string TransformGraphWithStringInputs(string graph_def_string,
|
||||
string inputs_string,
|
||||
string outputs_string,
|
||||
string transforms_string,
|
||||
TF_Status* out_status);
|
||||
|
||||
%unignoreall
|
@ -9,6 +9,7 @@ load(
|
||||
"//tensorflow:tensorflow.bzl",
|
||||
"tf_copts",
|
||||
"tf_cc_test",
|
||||
"tf_py_test",
|
||||
)
|
||||
|
||||
exports_files(["LICENSE"])
|
||||
@ -234,3 +235,25 @@ cc_binary(
|
||||
"//tensorflow/core:lib",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "transform_graph_py",
|
||||
srcs = ["__init__.py"],
|
||||
srcs_version = "PY2AND3",
|
||||
deps = ["//tensorflow/python:pywrap_tensorflow"],
|
||||
)
|
||||
|
||||
tf_py_test(
|
||||
name = "transform_graph_py_test",
|
||||
size = "small",
|
||||
srcs = ["python/transform_graph_test.py"],
|
||||
additional_deps = [
|
||||
":transform_graph_py",
|
||||
"//tensorflow/core:protos_all_py",
|
||||
"//tensorflow/python:client_testlib",
|
||||
"//tensorflow/python:framework_for_generated_wrappers",
|
||||
"//tensorflow/python:math_ops",
|
||||
"//tensorflow/python:variables",
|
||||
],
|
||||
main = "python/transform_graph_test.py",
|
||||
)
|
||||
|
53
tensorflow/tools/graph_transforms/__init__.py
Normal file
53
tensorflow/tools/graph_transforms/__init__.py
Normal file
@ -0,0 +1,53 @@
|
||||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Exposes the Python wrapper for graph transforms."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
# pylint: disable=unused-import,wildcard-import, line-too-long
|
||||
from tensorflow.core.framework import graph_pb2
|
||||
from tensorflow.python.framework import errors
|
||||
from tensorflow.python.pywrap_tensorflow import TransformGraphWithStringInputs
|
||||
|
||||
|
||||
def TransformGraph(input_graph_def, inputs, outputs, transforms):
|
||||
"""Python wrapper for the Graph Transform Tool.
|
||||
|
||||
Gives access to all graph transforms available through the command line tool.
|
||||
See documentation at https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md
|
||||
for full details of the options available.
|
||||
|
||||
Args:
|
||||
input_graph_def: GraphDef object containing a model to be transformed.
|
||||
inputs: List of node names for the model inputs.
|
||||
outputs: List of node names for the model outputs.
|
||||
transforms: List of strings containing transform names and parameters.
|
||||
|
||||
Returns:
|
||||
New GraphDef with transforms applied.
|
||||
"""
|
||||
|
||||
input_graph_def_string = input_graph_def.SerializeToString()
|
||||
inputs_string = ",".join(inputs)
|
||||
outputs_string = ",".join(outputs)
|
||||
transforms_string = " ".join(transforms)
|
||||
with errors.raise_exception_on_not_ok_status() as status:
|
||||
output_graph_def_string = TransformGraphWithStringInputs(
|
||||
input_graph_def_string, inputs_string, outputs_string,
|
||||
transforms_string, status)
|
||||
output_graph_def = graph_pb2.GraphDef()
|
||||
output_graph_def.ParseFromString(output_graph_def_string)
|
||||
return output_graph_def
|
@ -0,0 +1,85 @@
|
||||
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for StatSummarizer Python wrapper."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from tensorflow.core.framework import attr_value_pb2
|
||||
from tensorflow.core.framework import graph_pb2
|
||||
from tensorflow.python.framework import dtypes
|
||||
from tensorflow.python.framework import tensor_util
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow.tools.graph_transforms import TransformGraph
|
||||
|
||||
|
||||
class TransformGraphTest(test.TestCase):
|
||||
|
||||
# This test constructs a graph with a relu op that's not used by the normal
|
||||
# inference path, and then tests that the strip_unused transform removes it as
|
||||
# expected.
|
||||
def testTransformGraph(self):
|
||||
input_graph_def = graph_pb2.GraphDef()
|
||||
|
||||
const_op1 = input_graph_def.node.add()
|
||||
const_op1.op = "Const"
|
||||
const_op1.name = "const_op1"
|
||||
const_op1.attr["dtype"].CopyFrom(attr_value_pb2.AttrValue(
|
||||
type=dtypes.float32.as_datatype_enum))
|
||||
const_op1.attr["value"].CopyFrom(
|
||||
attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(
|
||||
[1, 2], dtypes.float32, [1, 2])))
|
||||
|
||||
const_op2 = input_graph_def.node.add()
|
||||
const_op2.op = "Const"
|
||||
const_op2.name = "const_op2"
|
||||
const_op2.attr["dtype"].CopyFrom(attr_value_pb2.AttrValue(
|
||||
type=dtypes.float32.as_datatype_enum))
|
||||
const_op2.attr["value"].CopyFrom(
|
||||
attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto(
|
||||
[3, 4], dtypes.float32, [1, 2])))
|
||||
|
||||
# Create an add that has two constants as inputs.
|
||||
add_op = input_graph_def.node.add()
|
||||
add_op.op = "Add"
|
||||
add_op.attr["T"].CopyFrom(attr_value_pb2.AttrValue(
|
||||
type=dtypes.float32.as_datatype_enum))
|
||||
add_op.name = "add_op"
|
||||
add_op.input.extend(["const_op1", "const_op2"])
|
||||
|
||||
# Create a relu that reads from the add.
|
||||
relu_op = input_graph_def.node.add()
|
||||
relu_op.op = "Relu"
|
||||
relu_op.attr["T"].CopyFrom(attr_value_pb2.AttrValue(
|
||||
type=dtypes.float32.as_datatype_enum))
|
||||
relu_op.name = "relu_op"
|
||||
relu_op.input.extend(["add_op"])
|
||||
|
||||
# We're specifying that add_op is the final output, and so the relu isn't
|
||||
# needed.
|
||||
input_names = []
|
||||
output_names = ["add_op"]
|
||||
transforms = ["strip_unused_nodes"]
|
||||
transformed_graph_def = TransformGraph(input_graph_def, input_names,
|
||||
output_names, transforms)
|
||||
|
||||
# We expect that the relu is no longer present after running the transform.
|
||||
for node in transformed_graph_def.node:
|
||||
self.assertNotEqual("Relu", node.op)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test.main()
|
Loading…
Reference in New Issue
Block a user