Add prediction to output

This commit is contained in:
Joseph-Rance 2020-01-20 16:04:18 +00:00 committed by GitHub
parent 42250f72b3
commit f6d1348596
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -373,15 +373,24 @@ class MaxPooling2D(Pooling2D):
Usage Example:
>>> input_image = np.random.normal(0.5,0.1,(1,28,28,1))
>>> output = np.random.normal(0.5,0.1,(1,13,13,16))
>>> input_image = tf.constant([[[[1.], [1.], [2.], [4.], [2.], [4.], [2.]],
... [[2.], [2.], [3.], [2.], [2.], [1.], [2.]],
... [[4.], [1.], [1.], [1.], [1.], [2.], [2.]],
... [[2.], [2.], [1.], [4.], [2.], [3.], [4.]],
... [[1.], [4.], [1.], [1.], [2.], [3.], [2.]],
... [[1.], [4.], [2.], [3.], [1.], [2.], [3.]],
... [[3.], [4.], [1.], [2.], [3.], [1.], [4.]]]])
>>> output = tf.constant([[[[1], [0]],
... [[0], [1]]]])
>>> model = tf.keras.models.Sequential()
>>> model.add(tf.keras.layers.Conv2D(16, kernel_size=(3, 3),
... input_shape=(28,28,1)))
>>> model.add(tf.keras.layers.Conv2D(1, kernel_size=(3, 3),
... input_shape=(7,7,1)))
>>> model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
>>> model.compile('adam', 'mean_squared_error')
>>> model.fit(input_image, output)
<tensorflow.python.keras.callbacks.History at 0x7f851d526e48>
>>> model.fit(input_image, output, steps_per_epoch=1,
... shuffle=False, verbose=0)
>>> model.predict(input_image, steps=1).shape
(1, 2, 2, 1)
For example, for stride=(1,1) and padding="same":