Documentation update to reference learning rate schedules in the optimizer documentation.
PiperOrigin-RevId: 281104367 Change-Id: Id814018dfb8f21b4d1b46b7d675838c56765b975
This commit is contained in:
parent
ca5a5ef208
commit
f5866078ee
@ -74,7 +74,8 @@ class Adadelta(optimizer_v2.OptimizerV2):
|
||||
learning rate can be set, as in most other Keras optimizers.
|
||||
|
||||
Args:
|
||||
learning_rate: A `Tensor` or a floating point value. The learning rate.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
To match the exact form in the original paper use 1.0.
|
||||
rho: A `Tensor` or a floating point value. The decay rate.
|
||||
epsilon: A `Tensor` or a floating point value. A constant epsilon used
|
||||
|
@ -63,7 +63,8 @@ class Adagrad(optimizer_v2.OptimizerV2):
|
||||
"""Construct a new Adagrad optimizer.
|
||||
|
||||
Args:
|
||||
learning_rate: A `Tensor` or a floating point value. The learning rate.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
initial_accumulator_value: A floating point value.
|
||||
Starting value for the accumulators, must be non-negative.
|
||||
epsilon: A small floating point value to avoid zero denominator.
|
||||
|
@ -108,7 +108,8 @@ class Adam(optimizer_v2.OptimizerV2):
|
||||
unless a variable slice was actually used).
|
||||
|
||||
Args:
|
||||
learning_rate: A Tensor or a floating point value. The learning rate.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
beta_1: A float value or a constant float tensor. The exponential decay
|
||||
rate for the 1st moment estimates.
|
||||
beta_2: A float value or a constant float tensor. The exponential decay
|
||||
|
@ -83,7 +83,8 @@ class Adamax(optimizer_v2.OptimizerV2):
|
||||
used).
|
||||
|
||||
Args:
|
||||
learning_rate: A Tensor or a floating point value. The learning rate.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
beta_1: A float value or a constant float tensor. The exponential decay
|
||||
rate for the 1st moment estimates.
|
||||
beta_2: A float value or a constant float tensor. The exponential decay
|
||||
|
@ -66,7 +66,8 @@ class Ftrl(optimizer_v2.OptimizerV2):
|
||||
r"""Construct a new FTRL optimizer.
|
||||
|
||||
Args:
|
||||
learning_rate: A float value or a constant float `Tensor`.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
learning_rate_power: A float value, must be less or equal to zero.
|
||||
Controls how the learning rate decreases during training. Use zero for
|
||||
a fixed learning rate.
|
||||
|
@ -69,7 +69,8 @@ class SGD(optimizer_v2.OptimizerV2):
|
||||
"""Construct a new Stochastic Gradient Descent or Momentum optimizer.
|
||||
|
||||
Arguments:
|
||||
learning_rate: float hyperparameter >= 0. Learning rate.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
momentum: float hyperparameter >= 0 that accelerates SGD in the relevant
|
||||
direction and dampens oscillations.
|
||||
nesterov: boolean. Whether to apply Nesterov momentum.
|
||||
|
@ -83,7 +83,8 @@ class RMSprop(optimizer_v2.OptimizerV2):
|
||||
a particular graph execution), but differs from the published algorithm.
|
||||
|
||||
Args:
|
||||
learning_rate: A Tensor or a floating point value. The learning rate.
|
||||
learning_rate: A `Tensor`, floating point value, or a schedule that is a
|
||||
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
|
||||
rho: Discounting factor for the history/coming gradient
|
||||
momentum: A scalar tensor.
|
||||
epsilon: Small value to avoid zero denominator.
|
||||
|
Loading…
x
Reference in New Issue
Block a user