Documentation update to reference learning rate schedules in the optimizer documentation.

PiperOrigin-RevId: 281104367
Change-Id: Id814018dfb8f21b4d1b46b7d675838c56765b975
This commit is contained in:
A. Unique TensorFlower 2019-11-18 10:49:38 -08:00 committed by TensorFlower Gardener
parent ca5a5ef208
commit f5866078ee
7 changed files with 14 additions and 7 deletions

View File

@ -74,7 +74,8 @@ class Adadelta(optimizer_v2.OptimizerV2):
learning rate can be set, as in most other Keras optimizers.
Args:
learning_rate: A `Tensor` or a floating point value. The learning rate.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
To match the exact form in the original paper use 1.0.
rho: A `Tensor` or a floating point value. The decay rate.
epsilon: A `Tensor` or a floating point value. A constant epsilon used

View File

@ -63,7 +63,8 @@ class Adagrad(optimizer_v2.OptimizerV2):
"""Construct a new Adagrad optimizer.
Args:
learning_rate: A `Tensor` or a floating point value. The learning rate.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
initial_accumulator_value: A floating point value.
Starting value for the accumulators, must be non-negative.
epsilon: A small floating point value to avoid zero denominator.

View File

@ -108,7 +108,8 @@ class Adam(optimizer_v2.OptimizerV2):
unless a variable slice was actually used).
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
beta_1: A float value or a constant float tensor. The exponential decay
rate for the 1st moment estimates.
beta_2: A float value or a constant float tensor. The exponential decay

View File

@ -83,7 +83,8 @@ class Adamax(optimizer_v2.OptimizerV2):
used).
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
beta_1: A float value or a constant float tensor. The exponential decay
rate for the 1st moment estimates.
beta_2: A float value or a constant float tensor. The exponential decay

View File

@ -66,7 +66,8 @@ class Ftrl(optimizer_v2.OptimizerV2):
r"""Construct a new FTRL optimizer.
Args:
learning_rate: A float value or a constant float `Tensor`.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
learning_rate_power: A float value, must be less or equal to zero.
Controls how the learning rate decreases during training. Use zero for
a fixed learning rate.

View File

@ -69,7 +69,8 @@ class SGD(optimizer_v2.OptimizerV2):
"""Construct a new Stochastic Gradient Descent or Momentum optimizer.
Arguments:
learning_rate: float hyperparameter >= 0. Learning rate.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
momentum: float hyperparameter >= 0 that accelerates SGD in the relevant
direction and dampens oscillations.
nesterov: boolean. Whether to apply Nesterov momentum.

View File

@ -83,7 +83,8 @@ class RMSprop(optimizer_v2.OptimizerV2):
a particular graph execution), but differs from the published algorithm.
Args:
learning_rate: A Tensor or a floating point value. The learning rate.
learning_rate: A `Tensor`, floating point value, or a schedule that is a
`tf.keras.optimizers.schedules.LearningRateSchedule`. The learning rate.
rho: Discounting factor for the history/coming gradient
momentum: A scalar tensor.
epsilon: Small value to avoid zero denominator.