From f577ada969539b3356e1926ea079010e173a5406 Mon Sep 17 00:00:00 2001 From: "A. Unique TensorFlower" <nobody@tensorflow.org> Date: Tue, 24 May 2016 17:18:58 -0800 Subject: [PATCH] Update generated Python Op docs. Change: 123168816 --- tensorflow/g3doc/api_docs/python/array_ops.md | 41 ++++++++++++++++--- .../g3doc/api_docs/python/constant_op.md | 4 +- .../g3doc/api_docs/python/contrib.learn.md | 9 ++-- .../tf.contrib.learn.evaluate.md | 9 ++-- .../functions_and_classes/tf.one_hot.md | 41 ++++++++++++++++--- tensorflow/g3doc/api_docs/python/nn.md | 6 +-- 6 files changed, 87 insertions(+), 23 deletions(-) diff --git a/tensorflow/g3doc/api_docs/python/array_ops.md b/tensorflow/g3doc/api_docs/python/array_ops.md index 0c6cd7582ec..3662e7eaa3a 100644 --- a/tensorflow/g3doc/api_docs/python/array_ops.md +++ b/tensorflow/g3doc/api_docs/python/array_ops.md @@ -1439,14 +1439,21 @@ boolean_mask(tensor, mask) ==> [[1, 2], [5, 6]] - - - -### `tf.one_hot(indices, depth, on_value=1, off_value=0, axis=None, dtype=tf.float32, name=None)` {#one_hot} +### `tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)` {#one_hot} Returns a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, -while all other locations take value `off_value`. By default, `on_value` is 1, -and `off_value` is 0. The type of the output tensor is specified by `dtype`, -which defaults to `tf.float32`. +while all other locations take value `off_value`. + +`on_value` and `off_value` must have matching data types. If `dtype` is also +provided, they must be the same data type as specified by `dtype`. + +If `on_value` is not provided, it will default to the value `1` with type +`dtype` + +If `off_value` is not provided, it will default to the value `0` with type +`dtype` If the input `indices` is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis` (default: the new axis is appended @@ -1468,6 +1475,13 @@ shape will be: depth x batch x features if axis == 0 ``` +If `dtype` is not provided, it will attempt to assume the data type of +`on_value` or `off_value`, if one or both are passed in. If none of +`on_value`, `off_value`, or `dtype` are provided, `dtype` will default to the +value `tf.float32` + +Note: If a non-numeric data type output is desired (tf.string, tf.bool, etc.), +both `on_value` and `off_value` _must_ be provided to `one_hot` Examples ========= @@ -1515,6 +1529,22 @@ Then output is `[2 x 2 x 3]`: ] ``` +Using default values for `on_value` and `off_value`: + +``` + indices = [0, 1, 2] + depth = 3 +``` + +The output will be + +``` + output = + [[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]] +``` + ##### Args: @@ -1535,7 +1565,8 @@ Then output is `[2 x 2 x 3]`: ##### Raises: -* <b>`TypeError`</b>: If dtype is `tf.string` +* <b>`TypeError`</b>: If dtype of either `on_value` or `off_value` don't match `dtype` +* <b>`TypeError`</b>: If dtype of `on_value` and `off_value` don't match one another diff --git a/tensorflow/g3doc/api_docs/python/constant_op.md b/tensorflow/g3doc/api_docs/python/constant_op.md index 1aaf39bd50b..008174f9d6f 100644 --- a/tensorflow/g3doc/api_docs/python/constant_op.md +++ b/tensorflow/g3doc/api_docs/python/constant_op.md @@ -60,7 +60,7 @@ tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]] * <b>`tensor`</b>: A `Tensor`. * <b>`dtype`</b>: A type for the returned `Tensor`. Must be `float32`, `float64`, - `int8`, `int16`, `int32`, `int64`, `uint8`, `complex64`, or `complex128`. + `int8`, `int16`, `int32`, `int64`, `uint8`, or `complex64`. * <b>`name`</b>: A name for the operation (optional). @@ -119,7 +119,7 @@ tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]] * <b>`tensor`</b>: A `Tensor`. * <b>`dtype`</b>: A type for the returned `Tensor`. Must be `float32`, `float64`, - `int8`, `int16`, `int32`, `int64`, `uint8`, `complex64` or `complex128`. + `int8`, `int16`, `int32`, `int64`, `uint8`, or `complex64`. * <b>`name`</b>: A name for the operation (optional). diff --git a/tensorflow/g3doc/api_docs/python/contrib.learn.md b/tensorflow/g3doc/api_docs/python/contrib.learn.md index 2bd7b7911f7..70aff96a846 100644 --- a/tensorflow/g3doc/api_docs/python/contrib.learn.md +++ b/tensorflow/g3doc/api_docs/python/contrib.learn.md @@ -3205,9 +3205,10 @@ and written to `output_dir`. * <b>`output_dir`</b>: A string containing the directory to write a summary to. * <b>`checkpoint_path`</b>: A string containing the path to a checkpoint to restore. Can be `None` if the graph doesn't require loading any variables. -* <b>`eval_dict`</b>: A `dict` mapping string names to tensors to evaluate for in every - eval step. -* <b>`update_op`</b>: A 'Tensor' which is run before evaluating 'eval_dict'. +* <b>`eval_dict`</b>: A `dict` mapping string names to tensors to evaluate. It is + evaluated in every logging step. The result of the final evaluation is + returned. If update_op is None, then it's evaluated in every step. +* <b>`update_op`</b>: A `Tensor` which is run in every step. * <b>`global_step_tensor`</b>: A `Variable` containing the global step. If `None`, one is extracted from the graph using the same logic as in `Supervisor`. Used to place eval summaries on training curves. @@ -3223,7 +3224,7 @@ and written to `output_dir`. A tuple `(eval_results, global_step)`: * <b>`eval_results`</b>: A `dict` mapping `string` to numeric values (`int`, `float`) - that are the eval results from the last step of the eval. None if no + that are the result of running eval_dict in the last step. `None` if no eval steps were run. * <b>`global_step`</b>: The global step this evaluation corresponds to. diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.contrib.learn.evaluate.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.contrib.learn.evaluate.md index ef4679752a8..022662c3f6d 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.contrib.learn.evaluate.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.contrib.learn.evaluate.md @@ -19,9 +19,10 @@ and written to `output_dir`. * <b>`output_dir`</b>: A string containing the directory to write a summary to. * <b>`checkpoint_path`</b>: A string containing the path to a checkpoint to restore. Can be `None` if the graph doesn't require loading any variables. -* <b>`eval_dict`</b>: A `dict` mapping string names to tensors to evaluate for in every - eval step. -* <b>`update_op`</b>: A 'Tensor' which is run before evaluating 'eval_dict'. +* <b>`eval_dict`</b>: A `dict` mapping string names to tensors to evaluate. It is + evaluated in every logging step. The result of the final evaluation is + returned. If update_op is None, then it's evaluated in every step. +* <b>`update_op`</b>: A `Tensor` which is run in every step. * <b>`global_step_tensor`</b>: A `Variable` containing the global step. If `None`, one is extracted from the graph using the same logic as in `Supervisor`. Used to place eval summaries on training curves. @@ -37,7 +38,7 @@ and written to `output_dir`. A tuple `(eval_results, global_step)`: * <b>`eval_results`</b>: A `dict` mapping `string` to numeric values (`int`, `float`) - that are the eval results from the last step of the eval. None if no + that are the result of running eval_dict in the last step. `None` if no eval steps were run. * <b>`global_step`</b>: The global step this evaluation corresponds to. diff --git a/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.one_hot.md b/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.one_hot.md index 790ab80c8a0..eebb6ab643c 100644 --- a/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.one_hot.md +++ b/tensorflow/g3doc/api_docs/python/functions_and_classes/tf.one_hot.md @@ -1,11 +1,18 @@ -### `tf.one_hot(indices, depth, on_value=1, off_value=0, axis=None, dtype=tf.float32, name=None)` {#one_hot} +### `tf.one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None)` {#one_hot} Returns a one-hot tensor. The locations represented by indices in `indices` take value `on_value`, -while all other locations take value `off_value`. By default, `on_value` is 1, -and `off_value` is 0. The type of the output tensor is specified by `dtype`, -which defaults to `tf.float32`. +while all other locations take value `off_value`. + +`on_value` and `off_value` must have matching data types. If `dtype` is also +provided, they must be the same data type as specified by `dtype`. + +If `on_value` is not provided, it will default to the value `1` with type +`dtype` + +If `off_value` is not provided, it will default to the value `0` with type +`dtype` If the input `indices` is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis` (default: the new axis is appended @@ -27,6 +34,13 @@ shape will be: depth x batch x features if axis == 0 ``` +If `dtype` is not provided, it will attempt to assume the data type of +`on_value` or `off_value`, if one or both are passed in. If none of +`on_value`, `off_value`, or `dtype` are provided, `dtype` will default to the +value `tf.float32` + +Note: If a non-numeric data type output is desired (tf.string, tf.bool, etc.), +both `on_value` and `off_value` _must_ be provided to `one_hot` Examples ========= @@ -74,6 +88,22 @@ Then output is `[2 x 2 x 3]`: ] ``` +Using default values for `on_value` and `off_value`: + +``` + indices = [0, 1, 2] + depth = 3 +``` + +The output will be + +``` + output = + [[1., 0., 0.], + [0., 1., 0.], + [0., 0., 1.]] +``` + ##### Args: @@ -94,5 +124,6 @@ Then output is `[2 x 2 x 3]`: ##### Raises: -* <b>`TypeError`</b>: If dtype is `tf.string` +* <b>`TypeError`</b>: If dtype of either `on_value` or `off_value` don't match `dtype` +* <b>`TypeError`</b>: If dtype of `on_value` and `off_value` don't match one another diff --git a/tensorflow/g3doc/api_docs/python/nn.md b/tensorflow/g3doc/api_docs/python/nn.md index 35a94808c1e..8254810db8a 100644 --- a/tensorflow/g3doc/api_docs/python/nn.md +++ b/tensorflow/g3doc/api_docs/python/nn.md @@ -163,7 +163,7 @@ case where both types are quantized. * <b>`value`</b>: A `Tensor` with type `float`, `double`, `int64`, `int32`, `uint8`, - `int16`, `int8`, `complex64` or `complex128`. + `int16`, `int8`, or `complex64`. * <b>`bias`</b>: A 1-D `Tensor` with size matching the last dimension of `value`. Must be the same type as `value` unless `value` is a quantized type, in which case a different quantized type may be used. @@ -186,7 +186,7 @@ Specifically, `y = 1 / (1 + exp(-x))`. ##### Args: -* <b>`x`</b>: A Tensor with type `float`, `double`, `int32`, `complex64`, `complex128`, `int64`, +* <b>`x`</b>: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`, or `qint32`. * <b>`name`</b>: A name for the operation (optional). @@ -205,7 +205,7 @@ Computes hyperbolic tangent of `x` element-wise. ##### Args: -* <b>`x`</b>: A Tensor with type `float`, `double`, `int32`, `complex64`, `complex128`, `int64`, +* <b>`x`</b>: A Tensor with type `float`, `double`, `int32`, `complex64`, `int64`, or `qint32`. * <b>`name`</b>: A name for the operation (optional).