Add testable docstrings to conv2d.
PiperOrigin-RevId: 283990710 Change-Id: I79039b1b2fb5b09099dec9c184314ebdcfc2b903
This commit is contained in:
parent
c04ca8b858
commit
f575856f03
@ -449,6 +449,33 @@ class Conv2D(Conv):
|
||||
e.g. `input_shape=(128, 128, 3)` for 128x128 RGB pictures
|
||||
in `data_format="channels_last"`.
|
||||
|
||||
Examples:
|
||||
|
||||
>>> # Small convolutional model for 128x128 RGB images with `channels_last`
|
||||
>>> input_shape = (32, 128, 128, 3)
|
||||
>>> x = tf.random.normal(input_shape)
|
||||
>>> y = tf.keras.layers.Conv2D(
|
||||
... 2, 3, activation='relu', input_shape=input_shape)(x)
|
||||
>>> print(y.shape)
|
||||
(32, 126, 126, 2)
|
||||
|
||||
>>> # With `dilation_rate` as 2.
|
||||
>>> input_shape = (32, 128, 128, 3)
|
||||
>>> x = tf.random.normal(input_shape)
|
||||
>>> y = tf.keras.layers.Conv2D(
|
||||
... 2, 3, activation='relu', dilation_rate=2, input_shape=input_shape)(x)
|
||||
>>> print(y.shape)
|
||||
(32, 124, 124, 2)
|
||||
|
||||
>>> # With `padding` as "same".
|
||||
>>> input_shape = (32, 128, 128, 3)
|
||||
>>> x = tf.random.normal(input_shape)
|
||||
>>> y = tf.keras.layers.Conv2D(
|
||||
... 2, 3, activation='relu', padding="same", input_shape=input_shape)(x)
|
||||
>>> print(y.shape)
|
||||
(32, 128, 128, 2)
|
||||
|
||||
|
||||
Arguments:
|
||||
filters: Integer, the dimensionality of the output space
|
||||
(i.e. the number of output filters in the convolution).
|
||||
@ -481,17 +508,25 @@ class Conv2D(Conv):
|
||||
incompatible with specifying any stride value != 1.
|
||||
activation: Activation function to use.
|
||||
If you don't specify anything, no activation is applied
|
||||
(ie. "linear" activation: `a(x) = x`).
|
||||
(ie. "linear" activation: `a(x) = x`). Check `keras.activations` for
|
||||
available activation functions.
|
||||
use_bias: Boolean, whether the layer uses a bias vector.
|
||||
kernel_initializer: Initializer for the `kernel` weights matrix.
|
||||
bias_initializer: Initializer for the bias vector.
|
||||
kernel_initializer: Initializer for the `kernel` weights matrix. Check
|
||||
`keras.initializers` for available initializers.
|
||||
bias_initializer: Initializer for the bias vector. Check
|
||||
`keras.initializers` for available initializers.
|
||||
kernel_regularizer: Regularizer function applied to
|
||||
the `kernel` weights matrix.
|
||||
bias_regularizer: Regularizer function applied to the bias vector.
|
||||
the `kernel` weights matrix. Check
|
||||
`keras.regularizers` for available regularizers.
|
||||
bias_regularizer: Regularizer function applied to the bias vector. Check
|
||||
`keras.regularizers` for available regularizers.
|
||||
activity_regularizer: Regularizer function applied to
|
||||
the output of the layer (its "activation")..
|
||||
kernel_constraint: Constraint function applied to the kernel matrix.
|
||||
bias_constraint: Constraint function applied to the bias vector.
|
||||
the output of the layer (its "activation"). Check
|
||||
`keras.regularizers` for available regularizers.
|
||||
kernel_constraint: Constraint function applied to the kernel matrix. Check
|
||||
`keras.constraints` for available constraints.
|
||||
bias_constraint: Constraint function applied to the bias vector. Check
|
||||
`keras.constraints` for available constraints.
|
||||
|
||||
Input shape:
|
||||
4D tensor with shape:
|
||||
@ -505,6 +540,14 @@ class Conv2D(Conv):
|
||||
or 4D tensor with shape:
|
||||
`(samples, new_rows, new_cols, filters)` if data_format='channels_last'.
|
||||
`rows` and `cols` values might have changed due to padding.
|
||||
|
||||
Returns:
|
||||
A tensor of rank 4 representing
|
||||
`activation(conv2d(inputs, kernel) + bias)`.
|
||||
|
||||
Raises:
|
||||
ValueError: if `padding` is "causal".
|
||||
ValueError: when both `strides` > 1 and `dilation_rate` > 1.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
Loading…
Reference in New Issue
Block a user