Fix formatting
Some of these indents are triggering markdown's (horrible) "4-space indent is a code block" feature PiperOrigin-RevId: 316883013 Change-Id: If2b53a6788d3179b868a62fb6b4caeeb08caa4bf
This commit is contained in:
parent
401dad16ea
commit
f44b07ed4e
@ -108,31 +108,29 @@ def map_fn(fn,
|
||||
|
||||
`fn_output_signature` can be specified using any of the following:
|
||||
|
||||
* A `tf.DType` or `tf.TensorSpec` (to describe a `tf.Tensor`)
|
||||
* A `tf.RaggedTensorSpec` (to describe a `tf.RaggedTensor`)
|
||||
* A `tf.SparseTensorSpec` (to describe a `tf.sparse.SparseTensor`)
|
||||
* A (possibly nested) tuple, list, or dict containing the above types.
|
||||
* A `tf.DType` or `tf.TensorSpec` (to describe a `tf.Tensor`)
|
||||
* A `tf.RaggedTensorSpec` (to describe a `tf.RaggedTensor`)
|
||||
* A `tf.SparseTensorSpec` (to describe a `tf.sparse.SparseTensor`)
|
||||
* A (possibly nested) tuple, list, or dict containing the above types.
|
||||
|
||||
#### RaggedTensors
|
||||
|
||||
`map_fn` supports `tf.RaggedTensor` inputs and outputs. In particular:
|
||||
|
||||
* If `elems` is a `RaggedTensor`, then `fn` will be called with each
|
||||
row of that ragged tensor.
|
||||
* If `elems` is a `RaggedTensor`, then `fn` will be called with each
|
||||
row of that ragged tensor.
|
||||
* If `elems` has only one ragged dimension, then the values passed to
|
||||
`fn` will be `tf.Tensor`s.
|
||||
* If `elems` has multiple ragged dimensions, then the values passed to
|
||||
`fn` will be `tf.RaggedTensor`s with one fewer ragged dimension.
|
||||
|
||||
* If `elems` has only one ragged dimension, then the values passed to
|
||||
`fn` will be `tf.Tensor`s.
|
||||
* If `elems` has multiple ragged dimensions, then the values passed to
|
||||
`fn` will be `tf.RaggedTensor`s with one fewer ragged dimension.
|
||||
|
||||
* If the result of `map_fn` should be a `RaggedTensor`, then use a
|
||||
`tf.RaggedTensorSpec` to specify `fn_output_signature`.
|
||||
|
||||
* If `fn` returns `tf.Tensor`s with varying sizes, then use a
|
||||
`tf.RaggedTensorSpec` with `ragged_rank=0` to combine them into a
|
||||
single ragged tensor (which will have ragged_rank=1).
|
||||
* If `fn` returns `tf.RaggedTensor`s, then use a `tf.RaggedTensorSpec`
|
||||
with the same `ragged_rank`.
|
||||
* If the result of `map_fn` should be a `RaggedTensor`, then use a
|
||||
`tf.RaggedTensorSpec` to specify `fn_output_signature`.
|
||||
* If `fn` returns `tf.Tensor`s with varying sizes, then use a
|
||||
`tf.RaggedTensorSpec` with `ragged_rank=0` to combine them into a
|
||||
single ragged tensor (which will have ragged_rank=1).
|
||||
* If `fn` returns `tf.RaggedTensor`s, then use a `tf.RaggedTensorSpec`
|
||||
with the same `ragged_rank`.
|
||||
|
||||
>>> # Example: RaggedTensor input
|
||||
>>> rt = tf.ragged.constant([[1, 2, 3], [], [4, 5], [6]])
|
||||
@ -150,10 +148,10 @@ def map_fn(fn,
|
||||
*rows* of a `RaggedTensor`. If you wish to map a function over the
|
||||
individual values, then you should use:
|
||||
|
||||
* `tf.ragged.map_flat_values(fn, rt)`
|
||||
(if fn is expressible as TensorFlow ops)
|
||||
* `rt.with_flat_values(map_fn(fn, rt.flat_values))`
|
||||
(otherwise)
|
||||
* `tf.ragged.map_flat_values(fn, rt)`
|
||||
(if fn is expressible as TensorFlow ops)
|
||||
* `rt.with_flat_values(map_fn(fn, rt.flat_values))`
|
||||
(otherwise)
|
||||
|
||||
E.g.:
|
||||
|
||||
@ -165,14 +163,14 @@ def map_fn(fn,
|
||||
|
||||
`map_fn` supports `tf.sparse.SparseTensor` inputs and outputs. In particular:
|
||||
|
||||
* If `elems` is a `SparseTensor`, then `fn` will be called with each row
|
||||
of that sparse tensor. In particular, the value passed to `fn` will be a
|
||||
`tf.sparse.SparseTensor` with one fewer dimension than `elems`.
|
||||
* If `elems` is a `SparseTensor`, then `fn` will be called with each row
|
||||
of that sparse tensor. In particular, the value passed to `fn` will be a
|
||||
`tf.sparse.SparseTensor` with one fewer dimension than `elems`.
|
||||
|
||||
* If the result of `map_fn` should be a `SparseTensor`, then use a
|
||||
`tf.SparseTensorSpec` to specify `fn_output_signature`. The individual
|
||||
`SparseTensor`s returned by `fn` will be stacked into a single
|
||||
`SparseTensor` with one more dimension.
|
||||
* If the result of `map_fn` should be a `SparseTensor`, then use a
|
||||
`tf.SparseTensorSpec` to specify `fn_output_signature`. The individual
|
||||
`SparseTensor`s returned by `fn` will be stacked into a single
|
||||
`SparseTensor` with one more dimension.
|
||||
|
||||
>>> # Example: SparseTensor input
|
||||
>>> st = tf.sparse.SparseTensor([[0, 0], [2, 0], [2, 1]], [2, 3, 4], [4, 4])
|
||||
@ -195,15 +193,15 @@ def map_fn(fn,
|
||||
*rows* of a `SparseTensor`. If you wish to map a function over the nonzero
|
||||
values, then you should use:
|
||||
|
||||
* If the function is expressible as TensorFlow ops, use:
|
||||
```python
|
||||
tf.sparse.SparseTensor(st.indices, fn(st.values), st.dense_shape)
|
||||
```
|
||||
* Otherwise, use:
|
||||
```python
|
||||
tf.sparse.SparseTensor(st.indices, tf.map_fn(fn, st.values),
|
||||
st.dense_shape)
|
||||
```
|
||||
* If the function is expressible as TensorFlow ops, use:
|
||||
```python
|
||||
tf.sparse.SparseTensor(st.indices, fn(st.values), st.dense_shape)
|
||||
```
|
||||
* Otherwise, use:
|
||||
```python
|
||||
tf.sparse.SparseTensor(st.indices, tf.map_fn(fn, st.values),
|
||||
st.dense_shape)
|
||||
```
|
||||
|
||||
#### `map_fn` vs. vectorized operations
|
||||
|
||||
@ -215,14 +213,14 @@ def map_fn(fn,
|
||||
|
||||
`map_fn` should typically only be used if one of the following is true:
|
||||
|
||||
* It is difficult or expensive to express the desired transform with
|
||||
vectorized operations.
|
||||
* `fn` creates large intermediate values, so an equivalent vectorized
|
||||
transform would take too much memory.
|
||||
* Processing elements in parallel is more efficient than an equivalent
|
||||
vectorized transform.
|
||||
* Efficiency of the transform is not critical, and using `map_fn` is
|
||||
more readable.
|
||||
* It is difficult or expensive to express the desired transform with
|
||||
vectorized operations.
|
||||
* `fn` creates large intermediate values, so an equivalent vectorized
|
||||
transform would take too much memory.
|
||||
* Processing elements in parallel is more efficient than an equivalent
|
||||
vectorized transform.
|
||||
* Efficiency of the transform is not critical, and using `map_fn` is
|
||||
more readable.
|
||||
|
||||
E.g., the example given above that maps `fn=lambda t: tf.range(t, t + 3)`
|
||||
across `elems` could be rewritten more efficiently using vectorized ops:
|
||||
@ -255,7 +253,7 @@ def map_fn(fn,
|
||||
[2, 3, 4]], dtype=int32)>
|
||||
|
||||
|
||||
Note that if you use the `tf.function` decorator, any non-TensorFlow Python
|
||||
Note: if you use the `tf.function` decorator, any non-TensorFlow Python
|
||||
code that you may have written in your function won't get executed. See
|
||||
`tf.function` for more details. The recommendation would be to debug without
|
||||
`tf.function` but switch to it to get performance benefits of running `map_fn`
|
||||
|
Loading…
Reference in New Issue
Block a user