diff --git a/tensorflow/lite/c/builtin_op_data.h b/tensorflow/lite/c/builtin_op_data.h
index 9e0e82bc906..232f5f95928 100644
--- a/tensorflow/lite/c/builtin_op_data.h
+++ b/tensorflow/lite/c/builtin_op_data.h
@@ -67,8 +67,9 @@ typedef struct {
 typedef enum {
   kTfLiteActNone = 0,
   kTfLiteActRelu,
-  kTfLiteActRelu1,  // min(max(-1, x), 1)
-  kTfLiteActRelu6,  // min(max(0, x), 6)
+  kTfLiteActReluN1To1,                    // min(max(-1, x), 1)
+  kTfLiteActRelu1 = kTfLiteActReluN1To1,  // kTfLiteActRelu1 will be deprecated.
+  kTfLiteActRelu6,                        // min(max(0, x), 6)
   kTfLiteActTanh,
   kTfLiteActSignBit,
   kTfLiteActSigmoid,
diff --git a/tensorflow/lite/core/api/flatbuffer_conversions.cc b/tensorflow/lite/core/api/flatbuffer_conversions.cc
index 2a4dfbb6ff4..73d785bf369 100644
--- a/tensorflow/lite/core/api/flatbuffer_conversions.cc
+++ b/tensorflow/lite/core/api/flatbuffer_conversions.cc
@@ -109,7 +109,7 @@ TfLiteFusedActivation ConvertActivation(ActivationFunctionType activation) {
     case ActivationFunctionType_RELU:
       return kTfLiteActRelu;
     case ActivationFunctionType_RELU_N1_TO_1:
-      return kTfLiteActRelu1;
+      return kTfLiteActReluN1To1;
     case ActivationFunctionType_RELU6:
       return kTfLiteActRelu6;
     case ActivationFunctionType_TANH:
diff --git a/tensorflow/lite/delegates/gpu/common/model_builder.cc b/tensorflow/lite/delegates/gpu/common/model_builder.cc
index 01f94c94888..8b5261cfd98 100644
--- a/tensorflow/lite/delegates/gpu/common/model_builder.cc
+++ b/tensorflow/lite/delegates/gpu/common/model_builder.cc
@@ -109,7 +109,7 @@ absl::Status IsActivationSupported(TfLiteFusedActivation fused_activation) {
   switch (fused_activation) {
     case kTfLiteActNone:
     case kTfLiteActRelu:
-    case kTfLiteActRelu1:
+    case kTfLiteActReluN1To1:
     case kTfLiteActRelu6:
     case kTfLiteActTanh:
       return absl::OkStatus();
@@ -140,12 +140,12 @@ absl::Status MaybeFuseActivation(TfLiteFusedActivation fused_activation,
   }
   switch (fused_activation) {
     case kTfLiteActRelu:
-    case kTfLiteActRelu1:
+    case kTfLiteActReluN1To1:
     case kTfLiteActRelu6: {
       ReLUAttributes attr;
       attr.clip = fused_activation == kTfLiteActRelu
                       ? 0.0f
-                      : (fused_activation == kTfLiteActRelu1 ? 1.0f : 6.0f);
+                      : (fused_activation == kTfLiteActReluN1To1 ? 1.0f : 6.0f);
       for (auto index : output_indices) {
         Node* activation_node;
         RETURN_IF_ERROR(
diff --git a/tensorflow/lite/delegates/hexagon/builders/conv_2d_builder.cc b/tensorflow/lite/delegates/hexagon/builders/conv_2d_builder.cc
index a366522e35c..cfddd2c2b97 100644
--- a/tensorflow/lite/delegates/hexagon/builders/conv_2d_builder.cc
+++ b/tensorflow/lite/delegates/hexagon/builders/conv_2d_builder.cc
@@ -197,7 +197,7 @@ TfLiteStatus Conv2dOpBuilder::PopulateSubGraph(const TfLiteIntArray* inputs,
   if (activation == kTfLiteActRelu6) {
     conv_output_min = 0;
     conv_output_max = 6;
-  } else if (activation == kTfLiteActRelu1) {
+  } else if (activation == kTfLiteActReluN1To1) {
     conv_output_min = -1;
     conv_output_max = 1;
   } else if (activation == kTfLiteActRelu) {
diff --git a/tensorflow/lite/delegates/hexagon/utils.cc b/tensorflow/lite/delegates/hexagon/utils.cc
index 9253836a3b1..223d4a8a826 100644
--- a/tensorflow/lite/delegates/hexagon/utils.cc
+++ b/tensorflow/lite/delegates/hexagon/utils.cc
@@ -26,7 +26,7 @@ namespace {
 
 bool IsActivationReluOrNone(TfLiteFusedActivation activation) {
   return (activation == kTfLiteActRelu || activation == kTfLiteActRelu6 ||
-          activation == kTfLiteActRelu1 || activation == kTfLiteActNone);
+          activation == kTfLiteActReluN1To1 || activation == kTfLiteActNone);
 }
 
 bool TensorTypeMatch(int tensor_id, TfLiteContext* context,
diff --git a/tensorflow/lite/delegates/xnnpack/xnnpack_delegate.cc b/tensorflow/lite/delegates/xnnpack/xnnpack_delegate.cc
index 739e45f62e4..0afc9c32122 100644
--- a/tensorflow/lite/delegates/xnnpack/xnnpack_delegate.cc
+++ b/tensorflow/lite/delegates/xnnpack/xnnpack_delegate.cc
@@ -330,7 +330,7 @@ class Subgraph {
         *output_min = 0.0f;
         *output_max = +std::numeric_limits<float>::infinity();
         return kTfLiteOk;
-      case kTfLiteActRelu1:
+      case kTfLiteActReluN1To1:
         *output_min = -1.0f;
         *output_max = +1.0f;
         return kTfLiteOk;
@@ -497,7 +497,7 @@ class Subgraph {
             context, "unsupported fused activation (Relu) in node #%d",
             node_index);
         return kTfLiteOk;
-      case kTfLiteActRelu1:
+      case kTfLiteActReluN1To1:
         TF_LITE_MAYBE_KERNEL_LOG(
             context, "unsupported fused activation (ReluMinus1To1) in node #%d",
             node_index);
diff --git a/tensorflow/lite/experimental/delegates/coreml/builders/activation_layer_builder.cc b/tensorflow/lite/experimental/delegates/coreml/builders/activation_layer_builder.cc
index ec032d8421e..df853797c8a 100644
--- a/tensorflow/lite/experimental/delegates/coreml/builders/activation_layer_builder.cc
+++ b/tensorflow/lite/experimental/delegates/coreml/builders/activation_layer_builder.cc
@@ -41,7 +41,7 @@ CoreML::Specification::NeuralNetworkLayer* ActivationLayerBuilder::Build() {
       layer_->mutable_activation()->mutable_relu();
       break;
     // Relu1 and Relu6 layers are fully composed in PopulateSubgraph().
-    case kTfLiteActRelu1:  // clip(-1, 1)
+    case kTfLiteActReluN1To1:  // clip(-1, 1)
       layer_->mutable_unary()->set_alpha(-1);
       layer_->mutable_unary()->set_type(
           CoreML::Specification::UnaryFunctionLayerParams::THRESHOLD);
@@ -64,7 +64,7 @@ CoreML::Specification::NeuralNetworkLayer* ActivationLayerBuilder::Build() {
 }
 
 TfLiteStatus ActivationLayerBuilder::PopulateSubgraph(TfLiteContext* context) {
-  if (!(activation_ == kTfLiteActRelu6 || activation_ == kTfLiteActRelu1)) {
+  if (!(activation_ == kTfLiteActRelu6 || activation_ == kTfLiteActReluN1To1)) {
     builder_output_ = AddOutput();
     return kTfLiteOk;
   }
@@ -125,7 +125,7 @@ OpBuilder* CreateReluOpBuilder(GraphBuilder* graph_builder) {
 }
 
 OpBuilder* CreateReluN1To1OpBuilder(GraphBuilder* graph_builder) {
-  return new ActivationLayerBuilder(graph_builder, kTfLiteActRelu1);
+  return new ActivationLayerBuilder(graph_builder, kTfLiteActReluN1To1);
 }
 
 OpBuilder* CreateRelu6OpBuilder(GraphBuilder* graph_builder) {
diff --git a/tensorflow/lite/experimental/writer/enum_mapping.h b/tensorflow/lite/experimental/writer/enum_mapping.h
index b78d610c4c5..5eabbcb2015 100644
--- a/tensorflow/lite/experimental/writer/enum_mapping.h
+++ b/tensorflow/lite/experimental/writer/enum_mapping.h
@@ -29,7 +29,7 @@ inline ActivationFunctionType TfLiteActivationToSchemaActivation(
       return ActivationFunctionType_NONE;
     case kTfLiteActRelu:
       return ActivationFunctionType_RELU;
-    case kTfLiteActRelu1:
+    case kTfLiteActReluN1To1:
       return ActivationFunctionType_RELU_N1_TO_1;
     case kTfLiteActRelu6:
       return ActivationFunctionType_RELU6;
diff --git a/tensorflow/lite/kernels/fully_connected.cc b/tensorflow/lite/kernels/fully_connected.cc
index 8b7a7832dbb..9cbbcae9c51 100644
--- a/tensorflow/lite/kernels/fully_connected.cc
+++ b/tensorflow/lite/kernels/fully_connected.cc
@@ -312,7 +312,7 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
   if (!is_pie && !is_hybrid) {
     TF_LITE_ENSURE(context, params->activation == kTfLiteActNone ||
                                 params->activation == kTfLiteActRelu ||
-                                params->activation == kTfLiteActRelu1 ||
+                                params->activation == kTfLiteActReluN1To1 ||
                                 params->activation == kTfLiteActRelu6);
   }
   return PrepareImpl(context, node);
diff --git a/tensorflow/lite/kernels/internal/tensor_utils.h b/tensorflow/lite/kernels/internal/tensor_utils.h
index e2af88d50e3..8c956c49f5f 100644
--- a/tensorflow/lite/kernels/internal/tensor_utils.h
+++ b/tensorflow/lite/kernels/internal/tensor_utils.h
@@ -587,7 +587,7 @@ inline void ApplyActivationToVector(const float* __restrict__ vector,
       return;
     case kTfLiteActRelu:
       return ApplyReluToVector(vector, v_size, result);
-    case kTfLiteActRelu1:
+    case kTfLiteActReluN1To1:
       return ApplyRelu1ToVector(vector, v_size, result);
     case kTfLiteActRelu6:
       return ApplyRelu6ToVector(vector, v_size, result);
diff --git a/tensorflow/lite/kernels/kernel_util.cc b/tensorflow/lite/kernels/kernel_util.cc
index 032726a7860..164aec3f224 100644
--- a/tensorflow/lite/kernels/kernel_util.cc
+++ b/tensorflow/lite/kernels/kernel_util.cc
@@ -188,7 +188,7 @@ void CalculateActivationRangeQuantizedImpl(TfLiteFusedActivation activation,
   } else if (activation == kTfLiteActRelu6) {
     *act_min = std::max(qmin, quantize(0.0));
     *act_max = std::min(qmax, quantize(6.0));
-  } else if (activation == kTfLiteActRelu1) {
+  } else if (activation == kTfLiteActReluN1To1) {
     *act_min = std::max(qmin, quantize(-1.0));
     *act_max = std::min(qmax, quantize(1.0));
   } else {
diff --git a/tensorflow/lite/kernels/kernel_util.h b/tensorflow/lite/kernels/kernel_util.h
index 6fc69fa1629..6bd6bb1c7ed 100644
--- a/tensorflow/lite/kernels/kernel_util.h
+++ b/tensorflow/lite/kernels/kernel_util.h
@@ -169,7 +169,7 @@ void CalculateActivationRange(TfLiteFusedActivation activation,
   } else if (activation == kTfLiteActRelu6) {
     *activation_min = 0;
     *activation_max = 6;
-  } else if (activation == kTfLiteActRelu1) {
+  } else if (activation == kTfLiteActReluN1To1) {
     *activation_min = -1;
     *activation_max = 1;
   } else {
diff --git a/tensorflow/lite/micro/kernels/activation_utils.h b/tensorflow/lite/micro/kernels/activation_utils.h
index a71826211c0..95ecc26dd52 100644
--- a/tensorflow/lite/micro/kernels/activation_utils.h
+++ b/tensorflow/lite/micro/kernels/activation_utils.h
@@ -35,7 +35,7 @@ inline float ActivationValFloat(TfLiteFusedActivation act, float a) {
       return a;
     case kTfLiteActRelu:
       return TfLiteMax(0.0f, a);
-    case kTfLiteActRelu1:
+    case kTfLiteActReluN1To1:
       return TfLiteMax(-1.0f, TfLiteMin(a, 1.0f));
     case kTfLiteActRelu6:
       return TfLiteMax(0.0f, TfLiteMin(a, 6.0f));
diff --git a/tensorflow/lite/micro/kernels/add_test.cc b/tensorflow/lite/micro/kernels/add_test.cc
index 60164ab4746..6c66e0d4aaf 100644
--- a/tensorflow/lite/micro/kernels/add_test.cc
+++ b/tensorflow/lite/micro/kernels/add_test.cc
@@ -201,7 +201,7 @@ TF_LITE_MICRO_TEST(FloatAddActivationRelu1) {
   float output_data[output_dims_count];
   tflite::testing::TestAddFloat(inout_shape, input1_values, inout_shape,
                                 input2_values, inout_shape, golden_values,
-                                kTfLiteActRelu1, output_data);
+                                kTfLiteActReluN1To1, output_data);
 }
 
 TF_LITE_MICRO_TEST(FloatAddVariousInputShapes) {
@@ -313,7 +313,7 @@ TF_LITE_MICRO_TEST(QuantizedAddActivationRelu1Uint8) {
       inout_shape, input1_values, input1_quantized, scales[0], zero_points[0],
       inout_shape, input2_values, input2_quantized, scales[1], zero_points[1],
       inout_shape, golden_values, golden_quantized, scales[2], zero_points[2],
-      kTfLiteActRelu1, output);
+      kTfLiteActReluN1To1, output);
 }
 
 TF_LITE_MICRO_TEST(QuantizedAddActivationRelu1Int8) {
@@ -334,7 +334,7 @@ TF_LITE_MICRO_TEST(QuantizedAddActivationRelu1Int8) {
       inout_shape, input1_values, input1_quantized, scales[0], zero_points[0],
       inout_shape, input2_values, input2_quantized, scales[1], zero_points[1],
       inout_shape, golden_values, golden_quantized, scales[2], zero_points[2],
-      kTfLiteActRelu1, output);
+      kTfLiteActReluN1To1, output);
 }
 
 TF_LITE_MICRO_TEST(QuantizedAddVariousInputShapesUint8) {
diff --git a/tensorflow/lite/micro/kernels/mul_test.cc b/tensorflow/lite/micro/kernels/mul_test.cc
index 6b4d4f07b64..f69bf2aa17e 100644
--- a/tensorflow/lite/micro/kernels/mul_test.cc
+++ b/tensorflow/lite/micro/kernels/mul_test.cc
@@ -402,7 +402,7 @@ TF_LITE_MICRO_TEST(FloatRelu) {
       {0.1, 0.2, 0.3, 0.5},     // input2 data
       {4, 1, 2, 2, 1},          // output shape
       {-0.2, 0.04, 0.21, 0.4},  // expected output data
-      output_data, kTfLiteActRelu1);
+      output_data, kTfLiteActReluN1To1);
 }
 
 TF_LITE_MICRO_TEST(FloatBroadcast) {
diff --git a/tensorflow/lite/micro/kernels/pooling_test.cc b/tensorflow/lite/micro/kernels/pooling_test.cc
index 9e11e9a4d57..35a77662e07 100644
--- a/tensorflow/lite/micro/kernels/pooling_test.cc
+++ b/tensorflow/lite/micro/kernels/pooling_test.cc
@@ -417,7 +417,8 @@ TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride1Stride2Relu) {
       kTfLitePaddingValid, kTfLiteActRelu, output_data);
 }
 
-TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2Stride1Relu1) {
+TF_LITE_MICRO_TEST(
+    SimpleAveragePoolTestInt8PaddingValidStride2Stride1ReluN1To1) {
   using tflite::testing::F2QS;
 
   const float input_min = -15.9375;
@@ -439,7 +440,7 @@ TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2Stride1Relu1) {
        F2QS(-0.25, output_min, output_max), F2QS(0.75, output_min, output_max)},
       {4, 1, 1, 2, 1},         // Output shape
       output_min, output_max,  // output quantization range
-      kTfLitePaddingValid, kTfLiteActRelu1, output_data);
+      kTfLitePaddingValid, kTfLiteActReluN1To1, output_data);
 }
 
 TF_LITE_MICRO_TEST(SimpleAveragePoolTestInt8PaddingValidStride2Relu6) {
@@ -532,7 +533,7 @@ TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu) {
                                     output_data);
 }
 
-TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu1) {
+TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatReluN1To1) {
   float output_data[2];
   tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1},  // Input shape
                                     {
@@ -548,7 +549,7 @@ TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu1) {
                                         0.7,
                                     },
                                     {4, 1, 1, 2, 1},  // Output shape
-                                    kTfLitePaddingValid, kTfLiteActRelu1,
+                                    kTfLitePaddingValid, kTfLiteActReluN1To1,
                                     output_data);
 
   tflite::testing::TestMaxPoolFloat({4, 1, 2, 4, 1},  // Input shape
@@ -565,7 +566,7 @@ TF_LITE_MICRO_TEST(SimpleMaxPoolTestFloatRelu1) {
                                         1.0,
                                     },
                                     {4, 1, 1, 2, 1},  // Output shape
-                                    kTfLitePaddingValid, kTfLiteActRelu1,
+                                    kTfLitePaddingValid, kTfLiteActReluN1To1,
                                     output_data);
 }
 
@@ -713,7 +714,7 @@ TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu) {
       kTfLitePaddingValid, kTfLiteActRelu, output_data);
 }
 
-TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu1) {
+TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActReluN1To1) {
   using tflite::testing::F2Q;
 
   uint8_t output_data[2];
@@ -743,7 +744,7 @@ TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu1) {
       {// Output values
        F2Q(-1.0, output_min, output_max), F2Q(1.0, output_min, output_max)},
       output_min, output_max, {4, 1, 1, 2, 1},  // Output shape
-      kTfLitePaddingValid, kTfLiteActRelu1, output_data);
+      kTfLitePaddingValid, kTfLiteActReluN1To1, output_data);
 }
 
 TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu6) {
@@ -944,7 +945,7 @@ TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu) {
       kTfLitePaddingValid, kTfLiteActRelu, output_data);
 }
 
-TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu1) {
+TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActReluN1To1) {
   using tflite::testing::F2QS;
 
   int8_t output_data[2];
@@ -974,7 +975,7 @@ TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu1) {
       {// Output values
        F2QS(-1.0, output_min, output_max), F2QS(1.0, output_min, output_max)},
       output_min, output_max, {4, 1, 1, 2, 1},  // Output shape
-      kTfLitePaddingValid, kTfLiteActRelu1, output_data);
+      kTfLitePaddingValid, kTfLiteActReluN1To1, output_data);
 }
 
 TF_LITE_MICRO_TEST(MaxPoolTestUInt8ActRelu6) {
diff --git a/tensorflow/lite/micro/kernels/sub_test.cc b/tensorflow/lite/micro/kernels/sub_test.cc
index d6ab48ead36..b8de6eba453 100644
--- a/tensorflow/lite/micro/kernels/sub_test.cc
+++ b/tensorflow/lite/micro/kernels/sub_test.cc
@@ -201,7 +201,7 @@ TF_LITE_MICRO_TEST(FloatSubActivationRelu1) {
   float output_data[output_dims_count];
   tflite::testing::TestSubFloat(inout_shape, input1_values, inout_shape,
                                 input2_values, inout_shape, golden_values,
-                                kTfLiteActRelu1, output_data);
+                                kTfLiteActReluN1To1, output_data);
 }
 
 TF_LITE_MICRO_TEST(FloatSubVariousInputShapes) {
@@ -313,7 +313,7 @@ TF_LITE_MICRO_TEST(QuantizedSubActivationRelu1Uint8) {
       inout_shape, input1_values, input1_quantized, scales[0], zero_points[0],
       inout_shape, input2_values, input2_quantized, scales[1], zero_points[1],
       inout_shape, golden_values, golden_quantized, scales[2], zero_points[2],
-      kTfLiteActRelu1, output);
+      kTfLiteActReluN1To1, output);
 }
 
 TF_LITE_MICRO_TEST(QuantizedSubActivationRelu1Int8) {
@@ -334,7 +334,7 @@ TF_LITE_MICRO_TEST(QuantizedSubActivationRelu1Int8) {
       inout_shape, input1_values, input1_quantized, scales[0], zero_points[0],
       inout_shape, input2_values, input2_quantized, scales[1], zero_points[1],
       inout_shape, golden_values, golden_quantized, scales[2], zero_points[2],
-      kTfLiteActRelu1, output);
+      kTfLiteActReluN1To1, output);
 }
 
 TF_LITE_MICRO_TEST(QuantizedSubVariousInputShapesUint8) {