Add quantized TANH operation, mostly copied from LOGISTIC.

PiperOrigin-RevId: 313569148
Change-Id: Id7801e9afaa7cb10dc51234cba9bf4d9320a0dc5
This commit is contained in:
A. Unique TensorFlower 2020-05-28 05:26:54 -07:00 committed by TensorFlower Gardener
parent 3c9dfef469
commit f0f84935e3
8 changed files with 453 additions and 71 deletions

View File

@ -481,6 +481,7 @@ cc_library(
"reference/strided_slice.h",
"reference/sub.h",
"reference/svdf.h",
"reference/tanh.h",
],
build_for_embedded = True,
copts = tflite_copts(),
@ -551,6 +552,7 @@ cc_library(
"reference/softmax.h",
"reference/strided_slice.h",
"reference/sub.h",
"reference/tanh.h",
],
copts = tflite_copts(),
deps = [

View File

@ -59,6 +59,7 @@ limitations under the License.
#include "tensorflow/lite/kernels/internal/reference/softmax.h"
#include "tensorflow/lite/kernels/internal/reference/strided_slice.h"
#include "tensorflow/lite/kernels/internal/reference/sub.h"
#include "tensorflow/lite/kernels/internal/reference/tanh.h"
#include "tensorflow/lite/kernels/internal/strided_slice_logic.h"
#include "tensorflow/lite/kernels/internal/tensor.h"
#include "tensorflow/lite/kernels/internal/types.h"
@ -1343,59 +1344,6 @@ inline void LogSoftmax(const SoftmaxParams& params,
}
}
inline void Tanh(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
float val = input_data[i];
float result = std::tanh(val);
output_data[i] = result;
}
}
// Convenience version that allows, for example, generated-code calls to be
// uniform between data types.
inline void Tanh(const TanhParams&, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
// Drop params: not needed.
Tanh(input_shape, input_data, output_shape, output_data);
}
inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
const int16* input_data, const RuntimeShape& output_shape,
int16* output_data) {
const int input_left_shift = params.input_left_shift;
// Support for shifts is limited until we have a parameterized version of
// SaturatingRoundingMultiplyByPOT().
TFLITE_DCHECK_GE(input_left_shift, 0);
TFLITE_DCHECK_LE(input_left_shift, 1);
const int flat_size = MatchingFlatSize(input_shape, output_shape);
// F0 uses 0 integer bits, range [-1, 1].
// This is the return type of math functions such as tanh, logistic,
// whose range is in [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
// F3 uses 3 integer bits, range [-8, 8], the input range expected here.
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
if (input_left_shift == 0) {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(input_data[i]);
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
} else {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(
gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i]));
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
}
}
inline void Dequantize(const RuntimeShape& input_shape,
const Eigen::half* input_data,

View File

@ -0,0 +1,86 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
#define TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_
#include <cmath>
#include "fixedpoint/fixedpoint.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/cppmath.h"
#include "tensorflow/lite/kernels/internal/types.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace reference_ops {
inline void Tanh(const RuntimeShape& input_shape, const float* input_data,
const RuntimeShape& output_shape, float* output_data) {
const int flat_size = MatchingFlatSize(input_shape, output_shape);
for (int i = 0; i < flat_size; i++) {
float val = input_data[i];
float result = std::tanh(val);
output_data[i] = result;
}
}
// Convenience version that allows, for example, generated-code calls to be
// uniform between data types.
inline void Tanh(const TanhParams&, const RuntimeShape& input_shape,
const float* input_data, const RuntimeShape& output_shape,
float* output_data) {
// Drop params: not needed.
Tanh(input_shape, input_data, output_shape, output_data);
}
inline void Tanh(const TanhParams& params, const RuntimeShape& input_shape,
const int16* input_data, const RuntimeShape& output_shape,
int16* output_data) {
const int input_left_shift = params.input_left_shift;
// Support for shifts is limited until we have a parameterized version of
// SaturatingRoundingMultiplyByPOT().
TFLITE_DCHECK_GE(input_left_shift, 0);
TFLITE_DCHECK_LE(input_left_shift, 1);
const int flat_size = MatchingFlatSize(input_shape, output_shape);
// F0 uses 0 integer bits, range [-1, 1].
// This is the return type of math functions such as tanh, logistic,
// whose range is in [-1, 1].
using F0 = gemmlowp::FixedPoint<std::int16_t, 0>;
// F3 uses 3 integer bits, range [-8, 8], the input range expected here.
using F3 = gemmlowp::FixedPoint<std::int16_t, 3>;
if (input_left_shift == 0) {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(input_data[i]);
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
} else {
for (int i = 0; i < flat_size; i++) {
F3 input = F3::FromRaw(
gemmlowp::SaturatingRoundingMultiplyByPOT<1>(input_data[i]));
F0 output = gemmlowp::tanh(input);
output_data[i] = output.raw();
}
}
}
} // namespace reference_ops
} // namespace tflite
#endif // TENSORFLOW_LITE_KERNELS_INTERNAL_REFERENCE_TANH_H_

View File

@ -51,6 +51,7 @@ cc_library(
"split.cc",
"strided_slice.cc",
"sub.cc",
"tanh.cc",
"unpack.cc",
] + select({
"//conditions:default": [
@ -153,6 +154,7 @@ cc_library(
"strided_slice.cc",
"sub.cc",
"svdf.cc",
"tanh.cc",
"unpack.cc",
],
hdrs = ["micro_ops.h"],
@ -656,3 +658,14 @@ tflite_micro_cc_test(
"//tensorflow/lite/micro/testing:micro_test",
],
)
tflite_micro_cc_test(
name = "tanh_test",
srcs = ["tanh_test.cc"],
deps = [
":all_ops_resolver",
"//tensorflow/lite/c:common",
"//tensorflow/lite/micro:micro_framework",
"//tensorflow/lite/micro/testing:micro_test",
],
)

View File

@ -106,9 +106,6 @@ TfLiteStatus LogicalNotEval(TfLiteContext* context, TfLiteNode* node) {
return EvalLogical(context, node, [](bool v) { return !v; });
}
TfLiteStatus TANHEval(TfLiteContext* context, TfLiteNode* node) {
return EvalNumeric(context, node, std::tanh);
}
} // namespace
} // namespace elementwise
@ -225,20 +222,6 @@ TfLiteRegistration* Register_LOGICAL_NOT() {
return &r;
}
TfLiteRegistration* Register_TANH() {
static TfLiteRegistration r = {
/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/
elementwise::GenericPrepare<elementwise::IsNumericSupportedType>,
/*invoke=*/elementwise::TANHEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@ -0,0 +1,128 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/kernels/internal/common.h"
#include "tensorflow/lite/kernels/internal/quantization_util.h"
#include "tensorflow/lite/kernels/internal/reference/tanh.h"
#include "tensorflow/lite/kernels/internal/tensor_ctypes.h"
#include "tensorflow/lite/kernels/kernel_util.h"
#include "tensorflow/lite/kernels/op_macros.h"
namespace tflite {
namespace ops {
namespace micro {
namespace activations {
namespace {
constexpr int kInputTensor = 0;
constexpr int kOutputTensor = 0;
struct OpData {
int32_t input_zero_point;
int32_t input_range_radius;
int32_t input_multiplier;
int input_left_shift;
};
TfLiteStatus CalculateArithmeticOpData(TfLiteContext* context, TfLiteNode* node,
OpData* data) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
TF_LITE_ENSURE_EQ(context, input->type, output->type);
if (input->type == kTfLiteInt8) {
TF_LITE_ENSURE_EQ(context, output->params.zero_point, 0);
// The number if input integer bits is set to be consistent with the
// required value in reference_integer_ops::Tanh
static constexpr int kInputIntegerBits = 4;
const double input_real_multiplier =
static_cast<double>(input->params.scale) *
static_cast<double>(1 << (31 - kInputIntegerBits));
const double q = std::frexp(input_real_multiplier, &data->input_left_shift);
data->input_multiplier = static_cast<int32_t>(TfLiteRound(q * (1ll << 31)));
data->input_range_radius =
CalculateInputRadius(kInputIntegerBits, data->input_left_shift, 31);
}
return kTfLiteOk;
}
} // namespace
TfLiteStatus TanhEval(TfLiteContext* context, TfLiteNode* node) {
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
OpData data;
CalculateArithmeticOpData(context, node, &data);
if (input->type == kTfLiteFloat32) {
switch (output->type) {
case kTfLiteFloat32: {
reference_ops::Tanh(GetTensorShape(input), GetTensorData<float>(input),
GetTensorShape(output),
GetTensorData<float>(output));
return kTfLiteOk;
}
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else if (input->type == kTfLiteInt8) {
switch (output->type) {
case kTfLiteInt8: {
reference_integer_ops::Tanh(
input->params.zero_point, data.input_range_radius,
data.input_multiplier, data.input_left_shift,
NumElements(input->dims), GetTensorData<int8_t>(input),
GetTensorData<int8_t>(output));
return kTfLiteOk;
}
default:
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
} else {
TF_LITE_KERNEL_LOG(context, "Input %s, output %s not supported.",
TfLiteTypeGetName(input->type),
TfLiteTypeGetName(output->type));
return kTfLiteError;
}
return kTfLiteOk;
}
} // namespace activations
TfLiteRegistration* Register_TANH() {
static TfLiteRegistration r = {/*init=*/nullptr,
/*free=*/nullptr,
/*prepare=*/nullptr,
/*invoke=*/activations::TanhEval,
/*profiling_string=*/nullptr,
/*builtin_code=*/0,
/*custom_name=*/nullptr,
/*version=*/0};
return &r;
}
} // namespace micro
} // namespace ops
} // namespace tflite

View File

@ -0,0 +1,220 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/kernels/all_ops_resolver.h"
#include "tensorflow/lite/micro/testing/micro_test.h"
#include "tensorflow/lite/micro/testing/test_utils.h"
namespace tflite {
namespace testing {
namespace {
void TestTanhFloat(std::initializer_list<int> input_dims_data,
std::initializer_list<float> input_data,
std::initializer_list<float> expected_output_data,
std::initializer_list<int> output_dims_data,
float* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateFloatTensor(input_data, input_dims, "input_tensor"),
CreateFloatTensor(output_data, output_dims, "output_tensor"),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_TANH, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 0;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1e-5f);
}
}
void TestTanhInt8(std::initializer_list<int> input_dims_data,
std::initializer_list<int8_t> input_data, float input_min,
float input_max,
std::initializer_list<int8_t> expected_output_data,
std::initializer_list<int> output_dims_data, float output_min,
float output_max, int8_t* output_data) {
TfLiteIntArray* input_dims = IntArrayFromInitializer(input_dims_data);
TfLiteIntArray* output_dims = IntArrayFromInitializer(output_dims_data);
const int output_elements_count = ElementCount(*output_dims);
constexpr int inputs_size = 1;
constexpr int outputs_size = 1;
constexpr int tensors_size = inputs_size + outputs_size;
TfLiteTensor tensors[tensors_size] = {
CreateQuantizedTensor(input_data, input_dims, "input_tensor", input_min,
input_max),
CreateQuantizedTensor(output_data, output_dims, "output_tensor",
output_min, output_max),
};
TfLiteContext context;
PopulateContext(tensors, tensors_size, micro_test::reporter, &context);
::tflite::ops::micro::AllOpsResolver resolver;
const TfLiteRegistration* registration =
resolver.FindOp(tflite::BuiltinOperator_TANH, 1);
TF_LITE_MICRO_EXPECT_NE(nullptr, registration);
const char* init_data = nullptr;
size_t init_data_size = 1;
void* user_data = nullptr;
if (registration->init) {
user_data = registration->init(&context, init_data, init_data_size);
}
int inputs_array_data[] = {1, 0};
TfLiteIntArray* inputs_array = IntArrayFromInts(inputs_array_data);
int outputs_array_data[] = {1, 1};
TfLiteIntArray* outputs_array = IntArrayFromInts(outputs_array_data);
TfLiteNode node;
node.inputs = inputs_array;
node.outputs = outputs_array;
node.temporaries = nullptr;
node.user_data = user_data;
node.builtin_data = nullptr;
node.custom_initial_data = nullptr;
node.custom_initial_data_size = 0;
node.delegate = nullptr;
if (registration->prepare) {
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->prepare(&context, &node));
}
TF_LITE_MICRO_EXPECT_NE(nullptr, registration->invoke);
TF_LITE_MICRO_EXPECT_EQ(kTfLiteOk, registration->invoke(&context, &node));
if (registration->free) {
registration->free(&context, user_data);
}
for (int i = 0; i < output_elements_count; ++i) {
TF_LITE_MICRO_EXPECT_NEAR(expected_output_data.begin()[i], output_data[i],
1);
}
}
} // namespace
} // namespace testing
} // namespace tflite
TF_LITE_MICRO_TESTS_BEGIN
TF_LITE_MICRO_TEST(SimpleTestFloat) {
const int output_elements_count = 10;
float output_data[output_elements_count];
tflite::testing::TestTanhFloat({2, 1, 5}, // Input shape.
{
1.0,
2.0,
3.0,
4.0,
93.0,
-1.0,
-2.0,
-3.0,
-4.0,
-93.0,
},
{
// Expected results.
0.76159416,
0.96402758,
0.99505475,
0.9993293,
1.0,
-0.76159416,
-0.96402758,
-0.99505475,
-0.9993293,
-1.0,
},
{2, 1, 5}, // Output shape.
output_data);
}
TF_LITE_MICRO_TEST(SimpleTestInt8) {
using tflite::testing::F2QS;
const float input_min = -31.75f;
const float input_max = 32.0f;
const float output_min = -1.0f;
const float output_max = (127.0f / 128.0f);
const int output_elements_count = 10;
int8_t output_data[output_elements_count];
tflite::testing::TestTanhInt8(
{2, 1, output_elements_count}, // Input shape.
{F2QS(1.0, input_min, input_max), F2QS(2.0, input_min, input_max),
F2QS(3.0, input_min, input_max), F2QS(4.0, input_min, input_max),
F2QS(5.0, input_min, input_max), F2QS(-1.0, input_min, input_max),
F2QS(-2.0, input_min, input_max), F2QS(-3.0, input_min, input_max),
F2QS(-4.0, input_min, input_max), F2QS(-5.0, input_min, input_max)},
input_min, input_max, // Input quantized range.
{ // Expected results.
F2QS(0.76159416, output_min, output_max),
F2QS(0.96402758, output_min, output_max),
F2QS(0.99505475, output_min, output_max),
F2QS(0.9993293, output_min, output_max),
F2QS(0.9999092, output_min, output_max),
F2QS(-0.76159416, output_min, output_max),
F2QS(-0.96402758, output_min, output_max),
F2QS(-0.99505475, output_min, output_max),
F2QS(-0.9993293, output_min, output_max),
F2QS(-0.9999092, output_min, output_max)},
{2, 1, output_elements_count}, // Output shape.
output_min, output_max, // Output quantized range.
output_data);
}
TF_LITE_MICRO_TESTS_END

View File

@ -164,6 +164,8 @@ tensorflow/lite/kernels/internal/reference/integer_ops/fully_connected.h \
tensorflow/lite/kernels/internal/reference/integer_ops/logistic.h \
tensorflow/lite/kernels/internal/reference/integer_ops/l2normalization.h \
tensorflow/lite/kernels/internal/reference/integer_ops/mul.h \
tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h \
tensorflow/lite/kernels/internal/reference/integer_ops/tanh.h \
tensorflow/lite/kernels/internal/reference/l2normalization.h \
tensorflow/lite/kernels/internal/reference/maximum_minimum.h \
tensorflow/lite/kernels/internal/reference/mul.h \
@ -181,7 +183,7 @@ tensorflow/lite/kernels/internal/reference/softmax.h \
tensorflow/lite/kernels/internal/reference/sub.h \
tensorflow/lite/kernels/internal/reference/logistic.h \
tensorflow/lite/kernels/internal/reference/strided_slice.h \
tensorflow/lite/kernels/internal/reference/integer_ops/pooling.h \
tensorflow/lite/kernels/internal/reference/tanh.h \
tensorflow/lite/kernels/internal/cppmath.h \
tensorflow/lite/kernels/internal/strided_slice_logic.h \
tensorflow/lite/kernels/internal/tensor.h \