[XLA] remove extraneous copies in copy_insertion related to nested conditionals and while loops. The change increases the precision of LiveRangeBefore analysis inside copy_insertion to accommodate disjoint branches inside conditionals that never overlap.

PiperOrigin-RevId: 352806528
Change-Id: I38ee239e5ea15a05ea7c92906cf591e29b1db951
This commit is contained in:
A. Unique TensorFlower 2021-01-20 09:18:27 -08:00 committed by TensorFlower Gardener
parent 96a758591c
commit f0ef7e229f
5 changed files with 336 additions and 111 deletions

View File

@ -880,9 +880,7 @@ class CopyRemover {
VLOG(2) << "Empty uses for " << *a.value;
return ordering_.IsDefinedBefore(*a.value, *b.value);
}
return absl::c_all_of(a.uses, [&](const HloUse* use) {
return ordering_.UseIsBeforeValueDefinition(*use, *b.value, dataflow_);
});
return ordering_.UsesBeforeValueDefinition(a.uses, *b.value, dataflow_);
}
// Returns whether 'node' is the last node in its list.

View File

@ -2473,6 +2473,101 @@ ENTRY TestComputation {
op::While(op::Copy(op::Parameter())));
}
TEST_F(CopyInsertionTest, NestedWhileAndConditional2) {
const string& hlo_string = R"(
HloModule TestModule
on_true
{
v1 = f32[2] parameter(0)
v2 = f32[2] add(v1,v1)
ROOT t1 = (f32[2], f32[2]) tuple(v1,v2)
}
on_false
{
v1 = f32[2] parameter(0)
v2 = f32[2] multiply(v1,v1)
ROOT t2 = (f32[2], f32[2]) tuple(v1,v2)
}
cond.outer {
param.1 = (pred[], f32[2], f32[2]) parameter(0)
ROOT param.cond.outer = pred[] get-tuple-element(param.1), index=0
}
body.outer {
param.1 = (pred[], f32[2], f32[2]) parameter(0)
pred.1 = pred[] get-tuple-element(param.1), index=0
arg_tuple.11 = f32[2] get-tuple-element(param.1), index=1
if = (f32[2], f32[2]) conditional(pred.1, arg_tuple.11, arg_tuple.11), true_computation=on_true, false_computation=on_false
e1 = f32[2] get-tuple-element(if), index=0
e2 = f32[2] get-tuple-element(if), index=1
ROOT res = (pred[], f32[2], f32[2]) tuple(pred.1,e1, e2)
}
ENTRY TestComputation {
entry_param.1 = pred[] parameter(0)
float_param = f32[2] parameter(1)
entry_param = (pred[], f32[2], f32[2]) tuple(entry_param.1, float_param, float_param)
ROOT while = (pred[], f32[2], f32[2]) while(entry_param), condition=cond.outer, body=body.outer
}
)";
TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module,
ParseAndReturnVerifiedModule(hlo_string));
InsertCopies(module.get());
VLOG(2) << module->ToString() << "\n";
// An extra copy must be kept inside the loop due to uses in the conditional
EXPECT_EQ(CountCopies(*module), 3);
}
TEST_F(CopyInsertionTest, NestedWhileAndConditional) {
const string& hlo_string = R"(
HloModule TestModule
on_true
{
v1 = f32[2] parameter(0)
ROOT v2 = f32[2] add(v1,v1)
}
on_false
{
v1 = f32[2] parameter(0)
ROOT v2 = f32[2] multiply(v1,v1)
}
cond.outer {
param.1 = (pred[], f32[2]) parameter(0)
ROOT param.cond.outer = pred[] get-tuple-element(param.1), index=0
}
body.outer {
param.1 = (pred[], f32[2]) parameter(0)
pred.1 = pred[] get-tuple-element(param.1), index=0
arg_tuple.11 = f32[2] get-tuple-element(param.1), index=1
if = f32[2] conditional(pred.1, arg_tuple.11, arg_tuple.11), true_computation=on_true, false_computation=on_false
ROOT res = (pred[], f32[2]) tuple(pred.1,if)
}
ENTRY TestComputation {
entry_param.1 = pred[] parameter(0)
float_param = f32[2] parameter(1)
entry_param = (pred[], f32[2]) tuple(entry_param.1, float_param)
ROOT while = (pred[], f32[2]) while(entry_param), condition=cond.outer, body=body.outer
}
)";
TF_ASSERT_OK_AND_ASSIGN(std::unique_ptr<HloModule> module,
ParseAndReturnVerifiedModule(hlo_string));
InsertCopies(module.get());
VLOG(2) << module->ToString() << "\n";
// There should only be two copies inserted, and in the entry and exit of the
// computation.
EXPECT_EQ(CountCopies(*module), 2);
}
TEST_F(CopyInsertionTest, FixpointComputationRequired) {
const string& hlo_string = R"(
HloModule Module

View File

@ -34,10 +34,28 @@ namespace xla {
bool HloOrdering::ExecutesBefore(const HloInstruction* a,
const HloInstruction* b) const {
switch (GetExecutionConstraint(a, b)) {
case ExecutionConstraint::kIsSame: // a and b are the same instruction;
return false;
case ExecutionConstraint::kRunBefore:
case ExecutionConstraint::kRunExclusiveBefore:
return true;
case ExecutionConstraint::kRunExclusiveAfter:
case ExecutionConstraint::kRunAfter:
case ExecutionConstraint::kUnordered:
return false;
}
}
HloOrdering::ExecutionConstraint HloOrdering::GetExecutionConstraint(
const HloInstruction* a, const HloInstruction* b) const {
// 'a' and 'b' may be in different computations. In this case, find the
// callgraph ancestor instructions which call (potentially transitively) the
// computations containing 'a' and 'b' and use these ancestor instructions to
// compare order.
if (a == b) {
return ExecutionConstraint::kIsSame;
}
const HloInstruction* a_ancestor;
const HloInstruction* b_ancestor;
std::tie(a_ancestor, b_ancestor) =
@ -45,9 +63,10 @@ bool HloOrdering::ExecutesBefore(const HloInstruction* a,
const_cast<HloInstruction*>(a), const_cast<HloInstruction*>(b));
if (a_ancestor == nullptr) {
// Ancestors in a common computation could not be found so consider the
// instructions 'a' and 'b' to be unordered.
return false;
VLOG(4) << "Ancestors in a common computation could not be found between"
<< a->ToString() << "\n and \n"
<< b->ToString() << "\n so consider them to be unordered.\n";
return ExecutionConstraint::kUnordered;
}
// a_ancestor and b_ancestor must be either both null or both non-null.
CHECK_NE(b_ancestor, nullptr);
@ -62,7 +81,7 @@ bool HloOrdering::ExecutesBefore(const HloInstruction* a,
const HloComputation* condition = a_ancestor->while_condition();
if (call_graph_->InstructionIsNestedIn(a, condition) &&
call_graph_->InstructionIsNestedIn(b, body)) {
return true;
return ExecutionConstraint::kRunBefore;
}
}
@ -85,17 +104,40 @@ bool HloOrdering::ExecutesBefore(const HloInstruction* a,
b_branch = j;
}
}
if (a_branch != -1 && a_branch < b_branch) {
return true;
// If neither a nor b is inside the branches they both are the ancestor.
if (a_branch == -1 && b_branch == -1) {
CHECK_EQ(a, a_ancestor);
CHECK_EQ(b, b_ancestor);
CHECK_EQ(a, b);
return ExecutionConstraint::kIsSame;
}
// If 'b' is the conditional ancestor, and 'a' is within a branch
// computation, 'a' executes before 'b'.
if (b == a_ancestor && a_branch != -1) {
return true;
if (b_branch == -1) {
CHECK_EQ(b, a_ancestor);
return ExecutionConstraint::kRunBefore;
}
if (a_branch == -1) {
CHECK_EQ(a, a_ancestor);
return ExecutionConstraint::kRunAfter;
}
if (a_branch < b_branch) {
return ExecutionConstraint::kRunExclusiveBefore;
}
if (b_branch < a_branch) {
return ExecutionConstraint::kRunExclusiveAfter;
}
}
return ExecutesBeforeInSameComputation(a_ancestor, b_ancestor);
if (ExecutesBeforeInSameComputation(a_ancestor, b_ancestor)) {
return ExecutionConstraint::kRunBefore;
}
if (ExecutesBeforeInSameComputation(b_ancestor, a_ancestor)) {
return ExecutionConstraint::kRunAfter;
}
VLOG(1) << "Cannot determine order between:" << a->ToString() << "\n"
<< "and " << b->ToString() << " which are in the same computation\n";
return ExecutionConstraint::kUnordered;
}
bool HloOrdering::IsDefinedBefore(const HloValue& a, const HloValue& b) const {
@ -167,102 +209,169 @@ bool HloOrdering::IsDefinedBefore(const HloValue& a, const HloValue& b) const {
}
/* static */
bool HloOrdering::UseIsBeforeValueDefinition(
const HloUse& use, const HloValue& value,
bool HloOrdering::UsesBeforeValueDefinition(
absl::Span<const HloUse* const> uses, const HloValue& value,
const HloDataflowAnalysis& dataflow) const {
VLOG(4) << "UseIsBeforeValueDefinition(use=" << use
<< ", value=" << value.ToShortString() << ")";
if (ExecutesBefore(use.instruction, value.defining_instruction())) {
VLOG(4) << " use instruction executes before value-defining instruction";
return true;
}
// If the use is at the instruction where the value is defined, then the use
// is before the def if the instruction allows buffer sharing (in place
// computation).
if (use.instruction == value.defining_instruction() &&
dataflow.CanShareOperandBufferWithUser(
use.instruction->mutable_operand(use.operand_number),
use.operand_index, value.defining_instruction(),
value.defining_index())) {
VLOG(4) << " use is value def, and instruction can share use buffer";
return true;
}
// The use at a while is an input to a phi, and logically occurs before values
// are defined in the body. Note that the use is *not* before the value if the
// value is defined in the condition and is not the condition parameter, since
// the input of a while's life range is only ended at the start the body.
if (use.instruction->opcode() == HloOpcode::kWhile) {
const HloInstruction* xla_while = use.instruction;
if (call_graph_->InstructionIsNestedIn(value.defining_instruction(),
xla_while->while_body())) {
VLOG(4) << " use is while " << use.instruction->name()
<< " and def is in body";
return true;
bool has_use_in_exclusive_branches = false;
bool has_escaped_use_in_conditional = false;
auto UseIsBeforeValueDefinition = [&](const HloUse& use) {
VLOG(4) << "UseIsBeforeValueDefinition(use=" << use
<< ", value=" << value.ToShortString() << ")";
switch (
GetExecutionConstraint(use.instruction, value.defining_instruction())) {
case HloOrdering::ExecutionConstraint::kIsSame:
// If the use is at the instruction where the value is defined, then the
// use is before the def if the instruction allows buffer sharing (in
// place computation).
if (dataflow.CanShareOperandBufferWithUser(
use.instruction->mutable_operand(use.operand_number),
use.operand_index, value.defining_instruction(),
value.defining_index())) {
VLOG(4)
<< " use is value def, and instruction can share use buffer.";
return true;
}
break;
case HloOrdering::ExecutionConstraint::kRunExclusiveAfter:
// If the use is located in a branch that is exclusive to the branch
// where value is located, in order for them to interfere, there must be
// an execution path where the value's definition can reach the use, so
// that the wrong value would reach use if their live ranges are merged.
// If there is such a path, it would have to pass through the point
// where the two exclusive branches are joined --- specifically the end
// of the conditional operation. For the join point to reach back to the
// use at the other exclusive branch, there has to be a be a surrounding
// loop, where the result of the conditional is passed back inside the
// conditional through one of its parameters. This use-def conflict
// between the parameter of a conditional and one of its branches is
// caught in the has_escaped_use_in_conditinoal variable.
VLOG(4) << " use and value def are in exclusive branches.";
if (!has_escaped_use_in_conditional) {
has_use_in_exclusive_branches = true;
VLOG(4) << "Allowing them to share buffer.\n";
return true;
}
VLOG(4) << "value def has escaped use in conditional. \n";
break;
case HloOrdering::ExecutionConstraint::kRunExclusiveBefore:
case HloOrdering::ExecutionConstraint::kRunBefore:
VLOG(4)
<< " use instruction executes before value-defining instruction";
return true;
case HloOrdering::ExecutionConstraint::kRunAfter:
case HloOrdering::ExecutionConstraint::kUnordered:
break;
}
if (call_graph_->InstructionIsNestedIn(value.defining_instruction(),
xla_while->while_condition())) {
if (value.defining_instruction() !=
xla_while->while_condition()->parameter_instruction(0)) {
// The use at a while is an input to a phi, and logically occurs before
// values are defined in the body. Note that the use is *not* before the
// value if the value is defined in the condition and is not the condition
// parameter, since the input of a while's live range is only ended at the
// start the body.
if (use.instruction->opcode() == HloOpcode::kWhile) {
const HloInstruction* xla_while = use.instruction;
if (call_graph_->InstructionIsNestedIn(value.defining_instruction(),
xla_while->while_body())) {
VLOG(4) << " use is while " << use.instruction->name()
<< " and def is in condition and is not the parameter";
return false;
} else {
VLOG(4) << " use is while " << use.instruction->name()
<< " and def is in condition and is the parameter";
<< " and def is in body";
return true;
}
if (call_graph_->InstructionIsNestedIn(value.defining_instruction(),
xla_while->while_condition())) {
if (value.defining_instruction() !=
xla_while->while_condition()->parameter_instruction(0)) {
VLOG(4) << " use is while " << use.instruction->name()
<< " and def is in condition and is not the parameter";
return false;
} else {
VLOG(4) << " use is while " << use.instruction->name()
<< " and def is in condition and is the parameter";
return true;
}
}
}
// Similarly if the value is defined at a while, it logically occurs after
// any uses in the body or condition computations.
if (value.defining_instruction()->opcode() == HloOpcode::kWhile) {
CHECK(value.is_phi());
const HloInstruction* xla_while = value.defining_instruction();
if (call_graph_->InstructionIsNestedIn(use.instruction,
xla_while->while_body()) ||
call_graph_->InstructionIsNestedIn(use.instruction,
xla_while->while_condition())) {
VLOG(4) << " value is while " << value.defining_instruction()->name()
<< " and use is in condition or body";
return true;
}
}
}
// Similarly if the value is defined at a while, it logically occurs after any
// uses in the body or condition computations.
if (value.defining_instruction()->opcode() == HloOpcode::kWhile) {
CHECK(value.is_phi());
const HloInstruction* xla_while = value.defining_instruction();
if (call_graph_->InstructionIsNestedIn(use.instruction,
xla_while->while_body()) ||
call_graph_->InstructionIsNestedIn(use.instruction,
xla_while->while_condition())) {
VLOG(4) << " value is while " << value.defining_instruction()->name()
<< " and use is in condition or body";
return true;
}
}
// The use at a call occurs before values that are defined in the called
// computation.
if (use.instruction->opcode() == HloOpcode::kCall) {
const HloInstruction* call = use.instruction;
if (call_graph_->InstructionIsNestedIn(value.defining_instruction(),
call->to_apply())) {
VLOG(4) << " use is call " << use.instruction->name()
<< " and def is in called computation";
return true;
}
}
if (use.instruction->opcode() == HloOpcode::kConditional) {
const HloInstruction* conditional = use.instruction;
for (int j = 0; j < conditional->branch_count(); ++j) {
if (call_graph_->InstructionIsNestedIn(
value.defining_instruction(),
conditional->branch_computation(j))) {
VLOG(4) << " use is conditional " << use.instruction->name()
<< " and def is in " << j << "th branch computation";
// The use at a call occurs before values that are defined in the called
// computation.
if (use.instruction->opcode() == HloOpcode::kCall) {
const HloInstruction* call = use.instruction;
if (call_graph_->InstructionIsNestedIn(value.defining_instruction(),
call->to_apply())) {
VLOG(4) << " use is call " << use.instruction->name()
<< " and def is in called computation";
return true;
}
}
if (value.defining_instruction() == use.instruction) {
VLOG(4) << " use is conditional " << use << " and def is "
<< value.ToShortString();
return true;
if (use.instruction->opcode() == HloOpcode::kConditional) {
const HloInstruction* conditional = use.instruction;
// In general the use of a value in the conditional parameter should be
// considered to be before a definition in one of its branches, and
// therefore allowed in live range merging, if there is no
// surrounding loop that creates a backward control flow path that
// allows the definition in the branch to have its value flow backward
// into the conditional and then flow into another branch in the
// conditional that uses the value. This is reflected by checking that
// the use-def in exclusive branches has not been already allowed.
// Further, if the def value escapes its branch, we conservatively
// assume a backward control flow path could exist, and set
// has_escaped_use_in_conditinoal to disallow any later uses in
// exclusive branches.
for (int j = 0; j < conditional->branch_count(); ++j) {
if (call_graph_->InstructionIsNestedIn(
value.defining_instruction(),
conditional->branch_computation(j))) {
// If the use operand does not create a new value, and the value def
// is returned by as part of the result of the conditional, it
// is possible for the branch definition to flow backward through a
// surrounding loop and then back into the conditional parameter.
if (!dataflow.ValueIsDefinedAt(
use.instruction->operand(use.operand_number), {})) {
for (auto value_use : value.uses()) {
VLOG(4) << "def have use:" << value_use << "\n";
if (value_use.instruction ==
value_use.instruction->parent()->root_instruction()) {
VLOG(4) << "def use is conditional root \n";
has_escaped_use_in_conditional = true;
break;
}
}
}
if (!has_use_in_exclusive_branches) {
VLOG(4) << " use is conditional " << use.instruction->name()
<< " and def is in " << j << "th branch computation";
return true;
}
}
}
if (value.defining_instruction() == use.instruction) {
VLOG(4) << " use is conditional " << use << " and def is "
<< value.ToShortString();
return true;
}
}
VLOG(4) << " use is not before value definition";
return false;
};
for (auto* use : uses) {
if (!UseIsBeforeValueDefinition(*use)) {
return false;
}
}
VLOG(4) << " use is not before value";
return false;
return true;
}
bool HloOrdering::LiveRangeStrictlyBefore(
@ -270,6 +379,7 @@ bool HloOrdering::LiveRangeStrictlyBefore(
const HloDataflowAnalysis& dataflow) const {
VLOG(4) << "LiveRangeStrictlyBefore(a = " << a.ToShortString()
<< ", b = " << b.ToShortString() << ")";
VLOG(4) << "Parent:" << a.instruction()->parent()->ToString() << "\n";
if (!IsDefinedBefore(a, b)) {
VLOG(4) << a << " not defined before " << b;
return false;
@ -294,16 +404,17 @@ bool HloOrdering::LiveRangeStrictlyBefore(
}
// All uses of 'a' must be before 'b' is defined.
std::vector<const HloUse*> uses;
for (const HloUse& use : a.uses()) {
if (dataflow.DoesNotUseOperandBuffer(a.instruction(), a.index(),
use.instruction)) {
continue;
}
if (!UseIsBeforeValueDefinition(use, b, dataflow)) {
VLOG(4) << "use of " << a << " (" << use << ") not before " << b
<< " is defined";
return false;
}
uses.push_back(&use);
}
if (!UsesBeforeValueDefinition(uses, b, dataflow)) {
VLOG(4) << "uses of " << a << "not before " << b << " is defined";
return false;
}
if (a.instruction()->parent() == b.instruction()->parent()) {

View File

@ -37,10 +37,30 @@ namespace xla {
// determine live range overlap of HLO instruction output buffers.
class HloOrdering {
public:
HloOrdering(const HloModule* module)
explicit HloOrdering(const HloModule* module)
: module_(module), call_graph_(CallGraph::Build(module)) {}
virtual ~HloOrdering() = default;
// Specify the ordering constraints between a pair of instructions a and b.
enum class ExecutionConstraint {
// Indicate a and b are the same instruction;
kIsSame,
// Indicate a runs before b;
kRunBefore,
// Only one of a or b runs each time their common ancestor is evaluated,
// and a is in an earlier branch than b.
kRunExclusiveBefore,
// Only one of a or b runs each time, and a is in a later branch than b.
kRunExclusiveAfter,
// Indicate a runs after b
kRunAfter,
// An order cannot be detrermined as a and b do not have a common ancestor.
kUnordered,
};
// Return the execution constraint between a and b.
HloOrdering::ExecutionConstraint GetExecutionConstraint(
const HloInstruction* a, const HloInstruction* b) const;
// Returns true if instruction 'a' executes before instruction 'b'. This is
// not reflexive, that is, an instruction does not execute before itself.
bool ExecutesBefore(const HloInstruction* a, const HloInstruction* b) const;
@ -51,8 +71,9 @@ class HloOrdering {
// Returns whether the given use is before the given value definition under
// the given ordering.
bool UseIsBeforeValueDefinition(const HloUse& use, const HloValue& value,
const HloDataflowAnalysis& dataflow) const;
bool UsesBeforeValueDefinition(absl::Span<const HloUse* const> uses,
const HloValue& value,
const HloDataflowAnalysis& dataflow) const;
// Returns whether the given values interfere. Two values interfere if they
// may both be simultaneously live.
bool MayInterfere(const HloValue& a, const HloValue& b,
@ -181,8 +202,8 @@ class DependencyHloOrdering : public PredecessorHloOrdering {
// interference is reduced relative to DependencyHloOrdering.
class SequentialHloOrdering : public HloOrdering {
public:
SequentialHloOrdering(const HloSchedule& schedule);
SequentialHloOrdering(HloSchedule&& schedule);
explicit SequentialHloOrdering(const HloSchedule& schedule);
explicit SequentialHloOrdering(HloSchedule&& schedule);
~SequentialHloOrdering() override = default;
// Returns the sequential instruction order for the given computation.

View File

@ -282,10 +282,10 @@ TEST_F(HloOrderingTest, ValuesInWhileComputations) {
dataflow->GetValueDefinedAt(add)));
ASSERT_EQ(dataflow->GetValueDefinedAt(xla_while).uses().size(), 1);
const HloUse& while_use = dataflow->GetValueDefinedAt(xla_while).uses()[0];
EXPECT_EQ(while_use.instruction, add);
EXPECT_TRUE(ordering.UseIsBeforeValueDefinition(
while_use, dataflow->GetValueDefinedAt(add), *dataflow));
const HloUse* while_use = &dataflow->GetValueDefinedAt(xla_while).uses()[0];
EXPECT_EQ(while_use->instruction, add);
EXPECT_TRUE(ordering.UsesBeforeValueDefinition(
{&while_use, 1}, dataflow->GetValueDefinedAt(add), *dataflow));
EXPECT_TRUE(ordering.LiveRangeStrictlyBefore(
dataflow->GetValueDefinedAt(xla_while), dataflow->GetValueDefinedAt(add),
*dataflow));