Merge pull request #45646 from rkuester:feature-micro-add-op-fill-pr4
PiperOrigin-RevId: 353642794 Change-Id: I5631b3e11c92a39a293f17d0d4ae1acac9280cfb
This commit is contained in:
commit
efef5a50cf
tensorflow/lite/micro/kernels
@ -23,9 +23,6 @@ limitations under the License.
|
||||
#include "tensorflow/lite/string_util.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace ops {
|
||||
namespace builtin {
|
||||
namespace fill {
|
||||
|
||||
namespace {
|
||||
|
||||
@ -33,41 +30,6 @@ constexpr int kDimsTensor = 0;
|
||||
constexpr int kValueTensor = 1;
|
||||
constexpr int kOutputTensor = 0;
|
||||
|
||||
template <typename T>
|
||||
TfLiteStatus ResizeOutputImpl(TfLiteContext* context, const TfLiteTensor* dims,
|
||||
TfLiteTensor* output) {
|
||||
TfLiteIntArray* output_shape = TfLiteIntArrayCreate(dims->dims->data[0]);
|
||||
for (int i = 0; i < output_shape->size; ++i) {
|
||||
T data = GetTensorData<T>(dims)[i];
|
||||
if (data < 0) {
|
||||
TfLiteIntArrayFree(output_shape);
|
||||
TF_LITE_KERNEL_LOG(context, "Fill dimensions must be >= 0",
|
||||
TfLiteTypeGetName(dims->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
output_shape->data[i] = data;
|
||||
}
|
||||
return context->ResizeTensor(context, output, output_shape);
|
||||
}
|
||||
|
||||
TfLiteStatus ResizeOutput(TfLiteContext* context, const TfLiteTensor* dims,
|
||||
TfLiteTensor* output) {
|
||||
switch (dims->type) {
|
||||
case kTfLiteInt32:
|
||||
return ResizeOutputImpl<int32_t>(context, dims, output);
|
||||
case kTfLiteInt64:
|
||||
return ResizeOutputImpl<int64_t>(context, dims, output);
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context,
|
||||
"Fill only currently supports int32, int64 for input 0, got %s.",
|
||||
TfLiteTypeGetName(dims->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumInputs(node), 2);
|
||||
TF_LITE_ENSURE_EQ(context, NumOutputs(node), 1);
|
||||
@ -100,20 +62,6 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus FillString(const TfLiteTensor* value, TfLiteTensor* output) {
|
||||
DynamicBuffer buffer;
|
||||
const auto string_ref = GetString(value, 0);
|
||||
int n = 1;
|
||||
for (int i = 0; i < output->dims->size; ++i) {
|
||||
n *= output->dims->data[i];
|
||||
}
|
||||
for (int i = 0; i < n; ++i) {
|
||||
buffer.AddString(string_ref.str, string_ref.len);
|
||||
}
|
||||
buffer.WriteToTensor(output, /*new_shape=*/nullptr);
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* value;
|
||||
TF_LITE_ENSURE_OK(context, GetInputSafe(context, node, kValueTensor, &value));
|
||||
@ -132,26 +80,12 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
GetTensorShape(output), \
|
||||
GetTensorData<data_type>(output))
|
||||
switch (output->type) {
|
||||
case kTfLiteInt32:
|
||||
TF_LITE_FILL(int32_t);
|
||||
break;
|
||||
case kTfLiteInt64:
|
||||
TF_LITE_FILL(int64_t);
|
||||
break;
|
||||
case kTfLiteFloat32:
|
||||
TF_LITE_FILL(float);
|
||||
break;
|
||||
case kTfLiteBool:
|
||||
TF_LITE_FILL(bool);
|
||||
break;
|
||||
case kTfLiteString:
|
||||
FillString(value, output);
|
||||
break;
|
||||
default:
|
||||
TF_LITE_KERNEL_LOG(
|
||||
context,
|
||||
"Fill only currently supports int32, int64, float32, bool, string "
|
||||
"for input 1, got %d.",
|
||||
context, "Fill only currently supports float32 for input 1, got %d.",
|
||||
TfLiteTypeGetName(value->type));
|
||||
return kTfLiteError;
|
||||
}
|
||||
@ -159,7 +93,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace fill
|
||||
} // namespace
|
||||
|
||||
TfLiteRegistration* Register_FILL() {
|
||||
static TfLiteRegistration r = {/*init=*/nullptr, /*free=*/nullptr,
|
||||
@ -167,6 +101,4 @@ TfLiteRegistration* Register_FILL() {
|
||||
return &r;
|
||||
}
|
||||
|
||||
} // namespace builtin
|
||||
} // namespace ops
|
||||
} // namespace tflite
|
||||
|
@ -12,85 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
#include <stdint.h>
|
||||
|
||||
#include <initializer_list>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "tensorflow/lite/kernels/test_util.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/string_type.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace {
|
||||
|
||||
using ::testing::ElementsAreArray;
|
||||
using ::testing::IsEmpty;
|
||||
|
||||
enum class TestType {
|
||||
kConst = 0,
|
||||
kDynamic = 1,
|
||||
};
|
||||
|
||||
template <typename dims_type, typename value_type>
|
||||
class FillOpModel : public SingleOpModel {
|
||||
public:
|
||||
explicit FillOpModel(TensorType dims_tensor_type,
|
||||
std::initializer_list<int> dims_shape,
|
||||
std::initializer_list<dims_type> dims_data,
|
||||
value_type value, TestType input_tensor_types) {
|
||||
if (input_tensor_types == TestType::kDynamic) {
|
||||
dims_ = AddInput(dims_tensor_type);
|
||||
value_ = AddInput(GetTensorType<value_type>());
|
||||
} else {
|
||||
dims_ = AddConstInput(dims_tensor_type, dims_data, dims_shape);
|
||||
value_ = AddConstInput(GetTensorType<value_type>(), {value}, {});
|
||||
}
|
||||
output_ = AddOutput(GetTensorType<value_type>());
|
||||
SetBuiltinOp(BuiltinOperator_FILL, BuiltinOptions_FillOptions,
|
||||
CreateFillOptions(builder_).Union());
|
||||
BuildInterpreter({dims_shape, {}});
|
||||
|
||||
if (input_tensor_types == TestType::kDynamic) {
|
||||
if (dims_data.size() > 0) {
|
||||
PopulateTensor<dims_type>(dims_, dims_data);
|
||||
}
|
||||
PopulateTensor<value_type>(value_, {value});
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<value_type> GetOutput() {
|
||||
return ExtractVector<value_type>(output_);
|
||||
}
|
||||
std::vector<int> GetOutputShape() { return GetTensorShape(output_); }
|
||||
|
||||
protected:
|
||||
int dims_;
|
||||
int value_;
|
||||
int output_;
|
||||
};
|
||||
|
||||
class FillOpTest : public ::testing::TestWithParam<TestType> {};
|
||||
|
||||
TEST_P(FillOpTest, FillInt32) {
|
||||
FillOpModel<int32_t, int32_t> m(TensorType_INT32, {2}, {2, 3}, -11,
|
||||
GetParam());
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(), ElementsAreArray({-11, -11, -11, -11, -11, -11}));
|
||||
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 3}));
|
||||
}
|
||||
|
||||
TEST_P(FillOpTest, FillInt64) {
|
||||
FillOpModel<int64_t, int64_t> m(TensorType_INT64, {2}, {2, 4}, 1LL << 45,
|
||||
GetParam());
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(),
|
||||
ElementsAreArray({1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45,
|
||||
1LL << 45, 1LL << 45, 1LL << 45, 1LL << 45}));
|
||||
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 4}));
|
||||
}
|
||||
|
||||
TEST_P(FillOpTest, FillFloat) {
|
||||
FillOpModel<int64_t, float> m(TensorType_INT64, {3}, {2, 2, 2}, 4.0,
|
||||
GetParam());
|
||||
@ -116,27 +40,4 @@ TEST_P(FillOpTest, FillOutputScalar) {
|
||||
EXPECT_THAT(m.GetOutputShape(), IsEmpty());
|
||||
}
|
||||
|
||||
TEST_P(FillOpTest, FillBool) {
|
||||
FillOpModel<int64_t, bool> m(TensorType_INT64, {3}, {2, 2, 2}, true,
|
||||
GetParam());
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(), ElementsAreArray({true, true, true, true, true,
|
||||
true, true, true}));
|
||||
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
||||
}
|
||||
|
||||
TEST(FillOpTest, FillString) {
|
||||
FillOpModel<int64_t, std::string> m(TensorType_INT64, {3}, {2, 2, 2}, "AB",
|
||||
TestType::kDynamic);
|
||||
m.Invoke();
|
||||
EXPECT_THAT(m.GetOutput(), ElementsAreArray({"AB", "AB", "AB", "AB", "AB",
|
||||
"AB", "AB", "AB"}));
|
||||
EXPECT_THAT(m.GetOutputShape(), ElementsAreArray({2, 2, 2}));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(FillOpTest, FillOpTest,
|
||||
::testing::Values(TestType::kConst,
|
||||
TestType::kDynamic));
|
||||
|
||||
} // namespace
|
||||
} // namespace tflite
|
||||
|
Loading…
Reference in New Issue
Block a user