Removes void*s from the tape gradient code, replacing with templates.

PiperOrigin-RevId: 175155685
This commit is contained in:
Alexandre Passos 2017-11-09 07:37:15 -08:00 committed by TensorFlower Gardener
parent 18d5c3e4cf
commit efab2e1d91
4 changed files with 479 additions and 465 deletions
tensorflow

View File

@ -106,7 +106,6 @@ tf_cc_test(
cc_library(
name = "tape",
srcs = ["tape.cc"],
hdrs = ["tape.h"],
visibility = ["//tensorflow:internal"],
deps = [

View File

@ -1,410 +0,0 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <unordered_set>
#include "tensorflow/c/eager/tape.h"
namespace tensorflow {
namespace eager {
bool GradientTape::ShouldRecord(gtl::ArraySlice<int64> tensor_ids) {
for (int64 i : tensor_ids) {
if (tensor_tape_.find(i) != tensor_tape_.end()) {
return true;
}
}
return false;
}
void GradientTape::Watch(int64 tensor_id) {
tensor_tape_.emplace(tensor_id, -1);
}
void GradientTape::RecordOperation(
const string& op_type, gtl::ArraySlice<TapeTensor> output_tensors,
gtl::ArraySlice<int64> input_tensor_id, void* backward_function,
const std::function<void()>& backward_function_deleter) {
if (!ShouldRecord(input_tensor_id)) {
backward_function_deleter();
return;
}
std::vector<int64> ids;
ids.reserve(input_tensor_id.size());
for (int64 i : input_tensor_id) {
tensor_usage_[i]++;
ids.push_back(i);
}
const int64 op_id = next_op_id_++;
std::vector<TapeTensor> tensors;
tensors.reserve(output_tensors.size());
for (const TapeTensor& o : output_tensors) {
// Note: the tensor can have already been watched and hence be in the tape,
// so we cannot check that we're inserting it here.
tensor_tape_[o.id] = op_id;
tensor_usage_[o.id] = 1;
tensors.push_back(o);
}
op_tape_[op_id] = OpTapeEntry{op_type, tensors, ids, backward_function,
backward_function_deleter};
}
void GradientTape::DeleteTrace(int64 tensor_id) {
auto it = tensor_usage_.find(tensor_id);
if (it == tensor_usage_.end()) {
return;
}
it->second--;
if (it->second != 0) {
return;
}
tensor_usage_.erase(it);
auto tensor_op_it = tensor_tape_.find(tensor_id);
if (tensor_op_it == tensor_tape_.end()) {
return;
}
const int64 op_id = tensor_op_it->second;
if (op_id == -1) {
// Do not delete watched tensors.
return;
}
tensor_tape_.erase(tensor_op_it);
auto op_it = op_tape_.find(op_id);
CHECK(op_it != op_tape_.end());
for (const auto& output : op_it->second.output_tensor_info) {
if (tensor_usage_.find(output.id) != tensor_usage_.end()) {
// Found a usage for an output, so cannot delete the op.
return;
}
}
for (int64 id : op_it->second.input_tensor_id) {
DeleteTrace(id);
}
op_it->second.backward_function_deleter();
op_tape_.erase(op_it);
}
// Terminology:
//
// - op: a possibly composite operation, which has an entry in the tape
// - target: dy in dx/dy
// - source: dx in dx/dy
// - tensor: one of the many inputs or outputs of an operation
//
// Below here we do the gradient algorithm. It works as follows:
//
// First we filter the tape to just the subset of operations we want to
// differentiate. In the process of doing so we count how many times each Tensor
// is used as an input to an op (so we know when we're done computing gradients
// for that Tensor). We also count, for each tape entry, how many of its output
// Tensors need gradients to be computed (Tensors which are not used do not need
// any gradients to be computed).
//
// Finally, we start a backprop stack with a set of tape entries for which we
// have all gradients available. This set usually is a subset of the set of
// targets (not all since targets which have outputs in the tape will not have
// gradients available initially).
//
// Then we repeatedly pop an entry from the stack, run its backprop, and update
// the gradients of its inputs. Once we have computed all gradients for a single
// input we can mark this input as done, and this can trigger adding an entry to
// the stack if all outputs of that entry are now done.
//
// When the stack is empty we have gradients for all tensors we're interested
// in.
struct BackpropInitialState {
OpTape op_tape;
// Map from tensor ID to how many references still exist for this tensor in
// the tape.
std::unordered_map<int64, int64> tensor_usage_counts;
// Maps from op ID to how many output tensors of this op still need to have
// their gradients computed.
std::unordered_map<int64, int64> op_missing_tensor;
};
BackpropInitialState PrepareBackprop(
gtl::ArraySlice<int64> target, const TensorTape& tensor_tape,
OpTape op_tape, const std::unordered_set<int64>& sources_set) {
std::vector<int64> tensor_stack;
tensor_stack.reserve(target.size());
for (auto t : target) {
tensor_stack.push_back(t);
}
BackpropInitialState result;
while (!tensor_stack.empty()) {
int64 tensor_id = tensor_stack.back();
tensor_stack.pop_back();
auto op_id_it = tensor_tape.find(tensor_id);
if (op_id_it == tensor_tape.end()) {
continue;
}
int64 op_id = op_id_it->second;
auto op_it = op_tape.find(op_id);
auto result_op_it = result.op_tape.find(op_id);
if (op_id == -1 || op_it == op_tape.end() ||
result_op_it != result.op_tape.end()) {
continue;
}
CHECK(result.op_tape.emplace(op_id, op_it->second).second);
for (auto it : op_it->second.input_tensor_id) {
auto count_it = result.tensor_usage_counts.find(it);
if (count_it != result.tensor_usage_counts.end()) {
count_it->second++;
} else {
result.tensor_usage_counts[it] = 1;
if (sources_set.find(it) == sources_set.end() &&
tensor_tape.find(it) != tensor_tape.end()) {
tensor_stack.push_back(it);
}
}
}
op_tape.erase(op_it);
}
for (auto& pair : result.tensor_usage_counts) {
auto it = tensor_tape.find(pair.first);
if (it != tensor_tape.end() && it->second != -1) {
result.op_missing_tensor[it->second] += 1;
}
}
// Call destructors for all unneeded gradient functions.
for (const auto& op_pair : op_tape) {
op_pair.second.backward_function_deleter();
}
return result;
}
std::vector<int64> InitialStack(
const OpTape& op_tape,
const std::unordered_map<int64, int64>& op_missing_tensor) {
std::vector<int64> result;
for (auto& op_entry : op_tape) {
if (op_missing_tensor.find(op_entry.first) == op_missing_tensor.end()) {
result.push_back(op_entry.first);
}
}
return result;
}
Status InitialGradients(const VSpace& vspace, gtl::ArraySlice<void*> target,
gtl::ArraySlice<void*> output_gradients,
std::unordered_map<int64, int64> tensor_usage_counts,
std::unordered_map<int64, std::vector<void*>>* result) {
for (int i = 0; i < target.size(); ++i) {
int64 id = vspace.TensorId(target[i]);
if (tensor_usage_counts.find(id) != tensor_usage_counts.end()) {
if (!output_gradients.empty() && output_gradients[i] != nullptr) {
// TODO(apassos) figure out how to print debugging information here.
return errors::InvalidArgument(
"A gradient was provided for a tensor which is used as part of the "
"computation.");
}
} else {
if (output_gradients.empty() || output_gradients[i] == nullptr) {
(*result)[id].push_back(vspace.OnesLike(target[i]));
} else {
(*result)[id].push_back(output_gradients[i]);
}
}
}
return Status::OK();
}
// If over kMinAggregateCount gradients are accumulated and the total
// memory consumption is over kMinAggregateBytes, do an early aggregation
// so as to release the gradient tensor to save memory.
static const int kMinAggregateCount = 4;
static const int kMinAggregateBytes = 128 * 1024 * 1024;
Status GradientTape::Gradient(const VSpace& vspace,
gtl::ArraySlice<void*> target,
gtl::ArraySlice<void*> sources,
gtl::ArraySlice<void*> output_gradients,
std::vector<void*>* result) {
std::vector<int64> id_sources;
id_sources.reserve(sources.size());
for (void* s : sources) {
id_sources.push_back(vspace.TensorId(s));
}
std::unordered_set<int64> sources_set(id_sources.begin(), id_sources.end());
std::vector<int64> id_targets;
id_sources.reserve(target.size());
for (void* t : target) {
id_targets.push_back(vspace.TensorId(t));
}
BackpropInitialState state = PrepareBackprop(
id_targets, tensor_tape_, std::move(op_tape_), sources_set);
std::vector<int64> op_stack =
InitialStack(state.op_tape, state.op_missing_tensor);
std::unordered_map<int64, std::vector<void*>> gradients;
Status s = InitialGradients(vspace, target, output_gradients,
state.tensor_usage_counts, &gradients);
auto cleanup = [&state]() {
// Release all backprop functions
for (const auto& pair : state.op_tape) {
pair.second.backward_function_deleter();
}
};
if (!s.ok()) {
cleanup();
return s;
}
std::unordered_map<int64, int64> gradients_size;
// TODO(apassos) multiple threads could be dequeuing from op_stack at the same
// time, for better CPU backprop performance.
VLOG(1) << "Initial stack:";
if (VLOG_IS_ON(1)) {
for (auto t : op_stack) {
VLOG(1) << " " << t;
}
}
std::unordered_map<string, std::unordered_set<int>>
functions_accept_none_for_indices({
{"SoftmaxCrossEntropyWithLogits", {1}},
{"FusedBatchNorm", {1, 2, 3, 4}},
});
while (!op_stack.empty()) {
const int64 op = op_stack.back();
VLOG(1) << "Popped " << op;
op_stack.pop_back();
auto op_it = state.op_tape.find(op);
if (op_it == state.op_tape.end()) {
// It is possible for ops to end up on the stack if they are unrelated to
// the target; we should just skip them.
continue;
}
auto trace = std::move(op_it->second);
state.op_tape.erase(op_it);
std::vector<void*> out_gradients;
out_gradients.reserve(trace.output_tensor_info.size());
for (int i = 0; i < trace.output_tensor_info.size(); ++i) {
const int64 id = trace.output_tensor_info[i].id;
auto grad_it = gradients.find(id);
if (grad_it == gradients.end()) {
auto func_name_it =
functions_accept_none_for_indices.find(trace.op_type);
if (func_name_it != functions_accept_none_for_indices.end() &&
func_name_it->second.find(i) != func_name_it->second.end()) {
out_gradients.push_back(nullptr);
} else {
out_gradients.push_back(
vspace.Zeros(trace.output_tensor_info[i].shape,
trace.output_tensor_info[i].dtype));
}
} else {
out_gradients.push_back(vspace.AggregateGradients(grad_it->second));
if (sources_set.find(grad_it->first) == sources_set.end()) {
gradients.erase(grad_it);
}
}
}
std::vector<void*> in_gradients;
Status s = vspace.CallBackwardFunction(trace.backward_function,
out_gradients, &in_gradients);
if (!s.ok()) {
VLOG(1) << "Gradient function failed.";
cleanup();
return s;
}
VLOG(1) << "Got " << in_gradients.size() << " in_gradients for "
<< trace.input_tensor_id.size() << " sources";
for (int i = 0; i < in_gradients.size(); ++i) {
const int64 id = trace.input_tensor_id[i];
if (in_gradients[i] != nullptr) {
auto& unaggregated_grads = gradients[id];
unaggregated_grads.push_back(in_gradients[i]);
if (unaggregated_grads.size() > kMinAggregateCount) {
auto size_it = gradients_size.find(id);
int64 size;
if (size_it == gradients_size.end()) {
size = vspace.NumElements(unaggregated_grads[0]);
gradients_size.emplace(id, size);
} else {
size = size_it->second;
}
if (unaggregated_grads.size() * size * 4 > kMinAggregateBytes) {
void* tensor = vspace.AggregateGradients(unaggregated_grads);
unaggregated_grads.clear();
unaggregated_grads.push_back(tensor);
}
}
}
auto usage_count_it = state.tensor_usage_counts.find(id);
if (usage_count_it == state.tensor_usage_counts.end()) {
VLOG(1) << "Tensor " << id << " not used";
continue;
}
usage_count_it->second--;
if (usage_count_it->second > 0) {
VLOG(1) << "Tensor " << id << " usage count " << usage_count_it->second;
continue;
}
auto tape_it = tensor_tape_.find(id);
if (tape_it == tensor_tape_.end()) {
VLOG(1) << "Tensor " << id
<< " has no associated op. Deleting gradient";
auto grad_it = gradients.find(id);
if (grad_it != gradients.end()) {
for (auto g : grad_it->second) {
vspace.DeleteTensor(g);
}
gradients.erase(grad_it);
}
continue;
}
const int64 op_id = tape_it->second;
if (op_id == -1) {
VLOG(1) << "Tensor " << id << " is source";
continue;
}
auto missing_it = state.op_missing_tensor.find(op_id);
if (missing_it != state.op_missing_tensor.end()) {
missing_it->second--;
VLOG(1) << "Op " << op_id << " missing " << missing_it->second
<< " output gradients";
if (missing_it->second == 0) {
op_stack.push_back(op_id);
}
}
}
}
CHECK(state.op_tape.empty());
result->reserve(sources.size());
for (auto is : id_sources) {
auto grad_it = gradients.find(is);
if (grad_it == gradients.end()) {
result->push_back(nullptr);
} else {
if (grad_it->second.size() == 1) {
result->push_back(grad_it->second[0]);
} else {
result->push_back(vspace.AggregateGradients(grad_it->second));
}
gradients.erase(grad_it);
}
}
VLOG(1) << "Final gradients size: " << gradients.size();
for (auto grad_pair : gradients) {
for (const auto& g : grad_pair.second) {
vspace.DeleteTensor(g);
}
}
return Status::OK();
}
} // namespace eager
} // namespace tensorflow

View File

@ -19,6 +19,7 @@ limitations under the License.
// maintains the data structures required to do so.
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
@ -36,13 +37,14 @@ struct TapeTensor {
};
// Represents an entry in the tape.
template <typename BackwardFunction>
struct OpTapeEntry {
string op_type;
std::vector<TapeTensor> output_tensor_info;
std::vector<int64> input_tensor_id;
// TODO(apassos) consider narrowing down this interface.
void* backward_function;
BackwardFunction* backward_function;
// Should be called before deleting the backward function. TODO(apassos) use
// unique_ptrs to ensure this happens.
@ -55,51 +57,67 @@ struct OpTapeEntry {
using TensorTape = std::unordered_map<int64, int64>;
// Map from operation-id to tape entry.
using OpTape = std::unordered_map<int64, OpTapeEntry>;
template <typename BackwardFunction>
using OpTape = std::unordered_map<int64, OpTapeEntry<BackwardFunction>>;
// Operations the tape needs to perform on tensors to do backpropagation. Named
// "vspace" because a subset of these are related to a vector space, such as
// adding gradients, getting zeroes, etc. Currently cannot be implemented
// without using tensorflow python code, hence left unspecified here.
//
// We currently use void* for tensors, backward functions, and gradients (which
// can be but are not required to be tensors). TODO(apassos) replace this first
// with templates to allow for pyobject specialization in the client followed by
// a TFE_TensorHandle specialization, which is blocked by quite a few things
// still.
// Tensor is a representation of a tensor. We need to take its ID, and it needs
// to match IDs in the tape.
//
// Gradient is the type returned by gradient functions. In Python TF it's either
// Tensor or IndexedSlices or None, which here we map to nullptr. Gradients need
// to allow their size to be computed and they need to be passable to a backward
// function and deleted (as the backprop code creates lots of gradients the user
// is not interested in).
//
// BackwardFunction needs to be a closure which stores intermediate activations
// from the forward computation and calls a vector-jacobian product function
// (also known as adjoint function) to compute, given downstream gradients,
// upstream gradients.
//
// TODO(apassos) provide concrete template instantiations for TFE_TensorHandle
// specialization, which is blocked by quite a few things needing to loop back
// into python now.
template <typename Tensor, typename Gradient, typename BackwardFunction>
class VSpace {
public:
virtual ~VSpace() {}
// Returns the number of elements in the tensor.
virtual int64 NumElements(void* tensor) const = 0;
// Returns the number of elements in the gradient tensor.
virtual int64 NumElements(Gradient* tensor) const = 0;
// Consumes references to the tensors in the gradient_tensors list and returns
// a tensor with the result.
virtual void* AggregateGradients(
gtl::ArraySlice<void*> gradient_tensors) const = 0;
virtual Gradient* AggregateGradients(
gtl::ArraySlice<Gradient*> gradient_tensors) const = 0;
// Returns a tensor of the right shape and dtype filled with zeros.
virtual void* Zeros(TensorShape shape, DataType dtype) const = 0;
virtual Gradient* Zeros(TensorShape shape, DataType dtype) const = 0;
// Returns a Tensor which is filled with ones and like the input.
virtual void* OnesLike(void*) const = 0;
virtual Gradient* OnesLike(Tensor*) const = 0;
// Returns an integer which is a unique-to-within-this-program handle for this
// tensor.
virtual int64 TensorId(void* tensor) const = 0;
virtual int64 TensorId(Tensor* tensor) const = 0;
// Calls the passed-in backward function.
virtual Status CallBackwardFunction(void* backward_function,
gtl::ArraySlice<void*> output_gradients,
std::vector<void*>* result) const = 0;
virtual Status CallBackwardFunction(
BackwardFunction* backward_function,
gtl::ArraySlice<Gradient*> output_gradients,
std::vector<Gradient*>* result) const = 0;
// Deletes the input tensor.
virtual void DeleteTensor(void* tensor) const = 0;
virtual void DeleteGradient(Gradient* gradient) const = 0;
};
// Traces the execution of operations, doing eager garbage collection, and
// exporting a full trace so other code can do backpropagation. Not thread-safe.
template <typename Tensor, typename Gradient, typename BackwardFunction>
class GradientTape {
public:
GradientTape() {}
@ -116,7 +134,7 @@ class GradientTape {
void RecordOperation(const string& op_type,
gtl::ArraySlice<TapeTensor> output_tensors,
gtl::ArraySlice<int64> input_tensor_id,
void* backward_function,
BackwardFunction* backward_function,
const std::function<void()>& backward_function_deleter);
void DeleteTrace(int64 tensor_id);
@ -125,14 +143,15 @@ class GradientTape {
// once) and produces the gradient of the target tensors with respect to the
// source tensors. The output gradients are used if not empty and not
// null. The result is populated with one tensor per target element.
Status Gradient(const VSpace& vspace, gtl::ArraySlice<void*> target,
gtl::ArraySlice<void*> sources,
gtl::ArraySlice<void*> output_gradients,
std::vector<void*>* result);
Status ComputeGradient(
const VSpace<Tensor, Gradient, BackwardFunction>& vspace,
gtl::ArraySlice<Tensor*> target, gtl::ArraySlice<Tensor*> sources,
gtl::ArraySlice<Gradient*> output_gradients,
std::vector<Gradient*>* result);
private:
TensorTape tensor_tape_;
OpTape op_tape_;
OpTape<BackwardFunction> op_tape_;
int64 next_op_id_{0};
// Map from tensor id to number of remaining usages (i.e. how many entries in
@ -140,6 +159,412 @@ class GradientTape {
std::unordered_map<int64, int64> tensor_usage_;
};
// Template instantiations here
template <typename Tensor, typename Gradient, typename BackwardFunction>
bool GradientTape<Tensor, Gradient, BackwardFunction>::ShouldRecord(
gtl::ArraySlice<int64> tensor_ids) {
for (int64 i : tensor_ids) {
if (tensor_tape_.find(i) != tensor_tape_.end()) {
return true;
}
}
return false;
}
template <typename Tensor, typename Gradient, typename BackwardFunction>
void GradientTape<Tensor, Gradient, BackwardFunction>::Watch(int64 tensor_id) {
tensor_tape_.emplace(tensor_id, -1);
}
template <typename Tensor, typename Gradient, typename BackwardFunction>
void GradientTape<Tensor, Gradient, BackwardFunction>::RecordOperation(
const string& op_type, gtl::ArraySlice<TapeTensor> output_tensors,
gtl::ArraySlice<int64> input_tensor_id, BackwardFunction* backward_function,
const std::function<void()>& backward_function_deleter) {
if (!ShouldRecord(input_tensor_id)) {
backward_function_deleter();
return;
}
std::vector<int64> ids;
ids.reserve(input_tensor_id.size());
for (int64 i : input_tensor_id) {
tensor_usage_[i]++;
ids.push_back(i);
}
const int64 op_id = next_op_id_++;
std::vector<TapeTensor> tensors;
tensors.reserve(output_tensors.size());
for (const TapeTensor& o : output_tensors) {
// Note: the tensor can have already been watched and hence be in the tape,
// so we cannot check that we're inserting it here.
tensor_tape_[o.id] = op_id;
tensor_usage_[o.id] = 1;
tensors.push_back(o);
}
op_tape_[op_id] = OpTapeEntry<BackwardFunction>{
op_type, tensors, ids, backward_function, backward_function_deleter};
}
template <typename Tensor, typename Gradient, typename BackwardFunction>
void GradientTape<Tensor, Gradient, BackwardFunction>::DeleteTrace(
int64 tensor_id) {
auto it = tensor_usage_.find(tensor_id);
if (it == tensor_usage_.end()) {
return;
}
it->second--;
if (it->second != 0) {
return;
}
tensor_usage_.erase(it);
auto tensor_op_it = tensor_tape_.find(tensor_id);
if (tensor_op_it == tensor_tape_.end()) {
return;
}
const int64 op_id = tensor_op_it->second;
if (op_id == -1) {
// Do not delete watched tensors.
return;
}
tensor_tape_.erase(tensor_op_it);
auto op_it = op_tape_.find(op_id);
CHECK(op_it != op_tape_.end());
for (const auto& output : op_it->second.output_tensor_info) {
if (tensor_usage_.find(output.id) != tensor_usage_.end()) {
// Found a usage for an output, so cannot delete the op.
return;
}
}
for (int64 id : op_it->second.input_tensor_id) {
DeleteTrace(id);
}
op_it->second.backward_function_deleter();
op_tape_.erase(op_it);
}
// Terminology:
//
// - op: a possibly composite operation, which has an entry in the tape
// - target: dy in dx/dy
// - source: dx in dx/dy
// - tensor: one of the many inputs or outputs of an operation
//
// Below here we do the gradient algorithm. It works as follows:
//
// First we filter the tape to just the subset of operations we want to
// differentiate. In the process of doing so we count how many times each Tensor
// is used as an input to an op (so we know when we're done computing gradients
// for that Tensor). We also count, for each tape entry, how many of its output
// Tensors need gradients to be computed (Tensors which are not used do not need
// any gradients to be computed).
//
// Finally, we start a backprop stack with a set of tape entries for which we
// have all gradients available. This set usually is a subset of the set of
// targets (not all since targets which have outputs in the tape will not have
// gradients available initially).
//
// Then we repeatedly pop an entry from the stack, run its backprop, and update
// the gradients of its inputs. Once we have computed all gradients for a single
// input we can mark this input as done, and this can trigger adding an entry to
// the stack if all outputs of that entry are now done.
//
// When the stack is empty we have gradients for all tensors we're interested
// in.
namespace {
template <typename BackwardFunction>
struct BackpropInitialState {
OpTape<BackwardFunction> op_tape;
// Map from tensor ID to how many references still exist for this tensor in
// the tape.
std::unordered_map<int64, int64> tensor_usage_counts;
// Maps from op ID to how many output tensors of this op still need to have
// their gradients computed.
std::unordered_map<int64, int64> op_missing_tensor;
};
template <typename BackwardFunction>
BackpropInitialState<BackwardFunction> PrepareBackprop(
gtl::ArraySlice<int64> target, const TensorTape& tensor_tape,
OpTape<BackwardFunction> op_tape,
const std::unordered_set<int64>& sources_set) {
std::vector<int64> tensor_stack;
tensor_stack.reserve(target.size());
for (auto t : target) {
tensor_stack.push_back(t);
}
BackpropInitialState<BackwardFunction> result;
while (!tensor_stack.empty()) {
int64 tensor_id = tensor_stack.back();
tensor_stack.pop_back();
auto op_id_it = tensor_tape.find(tensor_id);
if (op_id_it == tensor_tape.end()) {
continue;
}
int64 op_id = op_id_it->second;
auto op_it = op_tape.find(op_id);
auto result_op_it = result.op_tape.find(op_id);
if (op_id == -1 || op_it == op_tape.end() ||
result_op_it != result.op_tape.end()) {
continue;
}
CHECK(result.op_tape.emplace(op_id, op_it->second).second);
for (auto it : op_it->second.input_tensor_id) {
auto count_it = result.tensor_usage_counts.find(it);
if (count_it != result.tensor_usage_counts.end()) {
count_it->second++;
} else {
result.tensor_usage_counts[it] = 1;
if (sources_set.find(it) == sources_set.end() &&
tensor_tape.find(it) != tensor_tape.end()) {
tensor_stack.push_back(it);
}
}
}
op_tape.erase(op_it);
}
for (auto& pair : result.tensor_usage_counts) {
auto it = tensor_tape.find(pair.first);
if (it != tensor_tape.end() && it->second != -1) {
result.op_missing_tensor[it->second] += 1;
}
}
// Call destructors for all unneeded gradient functions.
for (const auto& op_pair : op_tape) {
op_pair.second.backward_function_deleter();
}
return result;
}
template <typename BackwardFunction>
std::vector<int64> InitialStack(
const OpTape<BackwardFunction>& op_tape,
const std::unordered_map<int64, int64>& op_missing_tensor) {
std::vector<int64> result;
for (auto& op_entry : op_tape) {
if (op_missing_tensor.find(op_entry.first) == op_missing_tensor.end()) {
result.push_back(op_entry.first);
}
}
return result;
}
template <typename Tensor, typename Gradient, typename BackwardFunction>
Status InitialGradients(
const VSpace<Tensor, Gradient, BackwardFunction>& vspace,
gtl::ArraySlice<Tensor*> target,
gtl::ArraySlice<Gradient*> output_gradients,
std::unordered_map<int64, int64> tensor_usage_counts,
std::unordered_map<int64, std::vector<Gradient*>>* result) {
for (int i = 0; i < target.size(); ++i) {
int64 id = vspace.TensorId(target[i]);
if (tensor_usage_counts.find(id) != tensor_usage_counts.end()) {
if (!output_gradients.empty() && output_gradients[i] != nullptr) {
// TODO(apassos) figure out how to print debugging information here.
return errors::InvalidArgument(
"A gradient was provided for a tensor which is used as part of the "
"computation.");
}
} else {
if (output_gradients.empty() || output_gradients[i] == nullptr) {
(*result)[id].push_back(vspace.OnesLike(target[i]));
} else {
(*result)[id].push_back(output_gradients[i]);
}
}
}
return Status::OK();
}
} // namespace
// If over kMinAggregateCount gradients are accumulated and the total
// memory consumption is over kMinAggregateBytes, do an early aggregation
// so as to release the gradient tensor to save memory.
constexpr int kMinAggregateCount = 4;
constexpr int kMinAggregateBytes = 128 * 1024 * 1024;
template <typename Tensor, typename Gradient, typename BackwardFunction>
Status GradientTape<Tensor, Gradient, BackwardFunction>::ComputeGradient(
const VSpace<Tensor, Gradient, BackwardFunction>& vspace,
gtl::ArraySlice<Tensor*> target, gtl::ArraySlice<Tensor*> sources,
gtl::ArraySlice<Gradient*> output_gradients,
std::vector<Gradient*>* result) {
std::vector<int64> id_sources;
id_sources.reserve(sources.size());
for (Tensor* s : sources) {
id_sources.push_back(vspace.TensorId(s));
}
std::unordered_set<int64> sources_set(id_sources.begin(), id_sources.end());
std::vector<int64> id_targets;
id_sources.reserve(target.size());
for (Tensor* t : target) {
id_targets.push_back(vspace.TensorId(t));
}
BackpropInitialState<BackwardFunction> state = PrepareBackprop(
id_targets, tensor_tape_, std::move(op_tape_), sources_set);
std::vector<int64> op_stack =
InitialStack(state.op_tape, state.op_missing_tensor);
std::unordered_map<int64, std::vector<Gradient*>> gradients;
Status s = InitialGradients(vspace, target, output_gradients,
state.tensor_usage_counts, &gradients);
auto cleanup = [&state]() {
// Release all backprop functions
for (const auto& pair : state.op_tape) {
pair.second.backward_function_deleter();
}
};
if (!s.ok()) {
cleanup();
return s;
}
std::unordered_map<int64, int64> gradients_size;
// TODO(apassos) multiple threads could be dequeuing from op_stack at the same
// time, for better CPU backprop performance.
VLOG(1) << "Initial stack:";
if (VLOG_IS_ON(1)) {
for (auto t : op_stack) {
VLOG(1) << " " << t;
}
}
std::unordered_map<string, std::unordered_set<int>>
functions_accept_none_for_indices({
{"SoftmaxCrossEntropyWithLogits", {1}},
{"FusedBatchNorm", {1, 2, 3, 4}},
});
while (!op_stack.empty()) {
const int64 op = op_stack.back();
VLOG(1) << "Popped " << op;
op_stack.pop_back();
auto op_it = state.op_tape.find(op);
if (op_it == state.op_tape.end()) {
// It is possible for ops to end up on the stack if they are unrelated to
// the target; we should just skip them.
continue;
}
auto trace = std::move(op_it->second);
state.op_tape.erase(op_it);
std::vector<Gradient*> out_gradients;
out_gradients.reserve(trace.output_tensor_info.size());
for (int i = 0; i < trace.output_tensor_info.size(); ++i) {
const int64 id = trace.output_tensor_info[i].id;
auto grad_it = gradients.find(id);
if (grad_it == gradients.end()) {
auto func_name_it =
functions_accept_none_for_indices.find(trace.op_type);
if (func_name_it != functions_accept_none_for_indices.end() &&
func_name_it->second.find(i) != func_name_it->second.end()) {
out_gradients.push_back(nullptr);
} else {
out_gradients.push_back(
vspace.Zeros(trace.output_tensor_info[i].shape,
trace.output_tensor_info[i].dtype));
}
} else {
out_gradients.push_back(vspace.AggregateGradients(grad_it->second));
if (sources_set.find(grad_it->first) == sources_set.end()) {
gradients.erase(grad_it);
}
}
}
std::vector<Gradient*> in_gradients;
Status s = vspace.CallBackwardFunction(trace.backward_function,
out_gradients, &in_gradients);
if (!s.ok()) {
VLOG(1) << "Gradient function failed.";
cleanup();
return s;
}
VLOG(1) << "Got " << in_gradients.size() << " in_gradients for "
<< trace.input_tensor_id.size() << " sources";
for (int i = 0; i < in_gradients.size(); ++i) {
const int64 id = trace.input_tensor_id[i];
if (in_gradients[i] != nullptr) {
auto& unaggregated_grads = gradients[id];
unaggregated_grads.push_back(in_gradients[i]);
if (unaggregated_grads.size() > kMinAggregateCount) {
auto size_it = gradients_size.find(id);
int64 size;
if (size_it == gradients_size.end()) {
size = vspace.NumElements(unaggregated_grads[0]);
gradients_size.emplace(id, size);
} else {
size = size_it->second;
}
if (unaggregated_grads.size() * size * 4 > kMinAggregateBytes) {
Gradient* grad = vspace.AggregateGradients(unaggregated_grads);
unaggregated_grads.clear();
unaggregated_grads.push_back(grad);
}
}
}
auto usage_count_it = state.tensor_usage_counts.find(id);
if (usage_count_it == state.tensor_usage_counts.end()) {
VLOG(1) << "Tensor " << id << " not used";
continue;
}
usage_count_it->second--;
if (usage_count_it->second > 0) {
VLOG(1) << "Tensor " << id << " usage count " << usage_count_it->second;
continue;
}
auto tape_it = tensor_tape_.find(id);
if (tape_it == tensor_tape_.end()) {
VLOG(1) << "Tensor " << id
<< " has no associated op. Deleting gradient";
auto grad_it = gradients.find(id);
if (grad_it != gradients.end()) {
for (auto g : grad_it->second) {
vspace.DeleteGradient(g);
}
gradients.erase(grad_it);
}
continue;
}
const int64 op_id = tape_it->second;
if (op_id == -1) {
VLOG(1) << "Tensor " << id << " is source";
continue;
}
auto missing_it = state.op_missing_tensor.find(op_id);
if (missing_it != state.op_missing_tensor.end()) {
missing_it->second--;
VLOG(1) << "Op " << op_id << " missing " << missing_it->second
<< " output gradients";
if (missing_it->second == 0) {
op_stack.push_back(op_id);
}
}
}
}
CHECK(state.op_tape.empty());
result->reserve(sources.size());
for (auto is : id_sources) {
auto grad_it = gradients.find(is);
if (grad_it == gradients.end()) {
result->push_back(nullptr);
} else {
if (grad_it->second.size() == 1) {
result->push_back(grad_it->second[0]);
} else {
result->push_back(vspace.AggregateGradients(grad_it->second));
}
gradients.erase(grad_it);
}
}
VLOG(1) << "Final gradients size: " << gradients.size();
for (auto grad_pair : gradients) {
for (const auto& g : grad_pair.second) {
vspace.DeleteGradient(g);
}
}
return Status::OK();
}
} // namespace eager
} // namespace tensorflow

View File

@ -443,10 +443,13 @@ void TFE_DeleteContextCapsule(PyObject* context) {
TF_DeleteStatus(status);
}
using GradientTape =
tensorflow::eager::GradientTape<PyObject, PyObject, PyObject>;
typedef struct {
PyObject_HEAD
/* Type-specific fields go here. */
tensorflow::eager::GradientTape* tape;
GradientTape* tape;
} TFE_Py_Tape;
static void TFE_Py_Tape_Delete(PyObject* tape) {
@ -481,7 +484,7 @@ PyObject* TFE_Py_NewTape() {
TFE_Py_Tape_Type.tp_new = PyType_GenericNew;
if (PyType_Ready(&TFE_Py_Tape_Type) < 0) return nullptr;
TFE_Py_Tape* tape = PyObject_NEW(TFE_Py_Tape, &TFE_Py_Tape_Type);
tape->tape = new tensorflow::eager::GradientTape();
tape->tape = new GradientTape();
return reinterpret_cast<PyObject*>(tape);
}
@ -627,9 +630,8 @@ void TFE_Py_TapeDeleteTrace(PyObject* tape, tensorflow::int64 tensor_id) {
reinterpret_cast<TFE_Py_Tape*>(tape)->tape->DeleteTrace(tensor_id);
}
// TODO(apassos): cache the attribute lookups as member variables and decref
// them in the destructor.
class PyVSpace : public tensorflow::eager::VSpace {
class PyVSpace
: public tensorflow::eager::VSpace<PyObject, PyObject, PyObject> {
public:
explicit PyVSpace(PyObject* py_vspace) : py_vspace_(py_vspace) {}
@ -661,7 +663,7 @@ class PyVSpace : public tensorflow::eager::VSpace {
Py_XDECREF(ones_like_);
}
tensorflow::int64 NumElements(void* tensor) const final {
tensorflow::int64 NumElements(PyObject* tensor) const final {
PyObject* arglist =
Py_BuildValue("(O)", reinterpret_cast<PyObject*>(tensor));
PyObject* result = PyEval_CallObject(num_elements_, arglist);
@ -671,8 +673,8 @@ class PyVSpace : public tensorflow::eager::VSpace {
return r;
}
void* AggregateGradients(
tensorflow::gtl::ArraySlice<void*> gradient_tensors) const final {
PyObject* AggregateGradients(
tensorflow::gtl::ArraySlice<PyObject*> gradient_tensors) const final {
PyObject* list = PyList_New(gradient_tensors.size());
for (int i = 0; i < gradient_tensors.size(); ++i) {
// Note: stealing a reference to the gradient tensors.
@ -689,8 +691,8 @@ class PyVSpace : public tensorflow::eager::VSpace {
return result;
}
void* Zeros(tensorflow::TensorShape shape,
tensorflow::DataType dtype) const final {
PyObject* Zeros(tensorflow::TensorShape shape,
tensorflow::DataType dtype) const final {
PyObject* py_shape = PyTuple_New(shape.dims());
for (int i = 0; i < shape.dims(); ++i) {
PyTuple_SET_ITEM(py_shape, i, PyLong_FromLong(shape.dim_size(i)));
@ -701,20 +703,20 @@ class PyVSpace : public tensorflow::eager::VSpace {
Py_DECREF(arg_list);
Py_DECREF(py_dtype);
Py_DECREF(py_shape);
return reinterpret_cast<void*>(result);
return reinterpret_cast<PyObject*>(result);
}
void* OnesLike(void* tensor) const final {
PyObject* OnesLike(PyObject* tensor) const final {
PyObject* arg_list = Py_BuildValue("(O)", tensor);
PyObject* result = PyEval_CallObject(ones_like_, arg_list);
if (result == nullptr) {
VLOG(1) << "Call to ones_like failed";
}
Py_DECREF(arg_list);
return reinterpret_cast<void*>(result);
return result;
}
tensorflow::int64 TensorId(void* tensor) const final {
tensorflow::int64 TensorId(PyObject* tensor) const final {
PyObject* py_tensor = reinterpret_cast<PyObject*>(tensor);
PyObject* id_field = PyObject_GetAttrString(py_tensor, "_id");
tensorflow::int64 id = MakeInt(id_field);
@ -723,9 +725,9 @@ class PyVSpace : public tensorflow::eager::VSpace {
}
tensorflow::Status CallBackwardFunction(
void* backward_function,
tensorflow::gtl::ArraySlice<void*> output_gradients,
std::vector<void*>* result) const final {
PyObject* backward_function,
tensorflow::gtl::ArraySlice<PyObject*> output_gradients,
std::vector<PyObject*>* result) const final {
PyObject* grads = PyTuple_New(output_gradients.size());
for (int i = 0; i < output_gradients.size(); ++i) {
if (output_gradients[i] == nullptr) {
@ -771,9 +773,7 @@ class PyVSpace : public tensorflow::eager::VSpace {
return tensorflow::Status::OK();
}
void DeleteTensor(void* tensor) const final {
Py_XDECREF(reinterpret_cast<PyObject*>(tensor));
}
void DeleteGradient(PyObject* tensor) const final { Py_XDECREF(tensor); }
private:
PyObject* py_vspace_;
@ -784,13 +784,13 @@ class PyVSpace : public tensorflow::eager::VSpace {
PyObject* ones_like_;
};
std::vector<void*> MakeTensorList(PyObject* tensors) {
std::vector<PyObject*> MakeTensorList(PyObject* tensors) {
PyObject* seq = PySequence_Fast(tensors, "expected a sequence");
if (seq == nullptr) {
return {};
}
int len = PySequence_Fast_GET_SIZE(seq);
std::vector<void*> list;
std::vector<PyObject*> list;
list.reserve(len);
for (int i = 0; i < len; ++i) {
list.push_back(PySequence_Fast_GET_ITEM(seq, i));
@ -807,30 +807,30 @@ PyObject* TFE_Py_TapeGradient(PyObject* tape, PyObject* vspace,
return nullptr;
}
std::vector<void*> target_vec = MakeTensorList(target);
std::vector<PyObject*> target_vec = MakeTensorList(target);
if (PyErr_Occurred()) {
return nullptr;
}
std::vector<void*> sources_vec = MakeTensorList(sources);
std::vector<PyObject*> sources_vec = MakeTensorList(sources);
if (PyErr_Occurred()) {
return nullptr;
}
std::vector<void*> outgrad_vec;
std::vector<PyObject*> outgrad_vec;
if (output_gradients != Py_None) {
outgrad_vec = MakeTensorList(output_gradients);
if (PyErr_Occurred()) {
return nullptr;
}
for (void* tensor : outgrad_vec) {
for (PyObject* tensor : outgrad_vec) {
// Calling the backward function will eat a reference to the tensors in
// outgrad_vec, so we need to increase their reference count.
Py_INCREF(reinterpret_cast<PyObject*>(tensor));
Py_INCREF(tensor);
}
}
TFE_Py_Tape* tape_obj = reinterpret_cast<TFE_Py_Tape*>(tape);
std::vector<void*> result;
status->status = tape_obj->tape->Gradient(c_vspace, target_vec, sources_vec,
outgrad_vec, &result);
std::vector<PyObject*> result;
status->status = tape_obj->tape->ComputeGradient(
c_vspace, target_vec, sources_vec, outgrad_vec, &result);
if (!status->status.ok()) {
return nullptr;
}