Move the init file content to API gen build rule.
The final leftover piece is keras.layer. PiperOrigin-RevId: 276390172 Change-Id: Ie2efc73e9b987df15fb8085f82b8369eca8ce664
This commit is contained in:
parent
5ca25fda42
commit
ef15e65bca
@ -23,10 +23,7 @@ from __future__ import print_function
|
||||
|
||||
from tensorflow.python import tf2
|
||||
|
||||
from tensorflow.python.keras import estimator
|
||||
from tensorflow.python.keras import layers
|
||||
from tensorflow.python.keras import premade
|
||||
from tensorflow.python.keras import preprocessing
|
||||
from tensorflow.python.keras.layers import Input
|
||||
from tensorflow.python.keras.models import Model
|
||||
from tensorflow.python.keras.models import Sequential
|
||||
|
@ -37,12 +37,18 @@ keras_packages = [
|
||||
"tensorflow.python.keras.datasets.imdb",
|
||||
"tensorflow.python.keras.datasets.mnist",
|
||||
"tensorflow.python.keras.datasets.reuters",
|
||||
"tensorflow.python.keras.estimator",
|
||||
"tensorflow.python.keras.initializers",
|
||||
"tensorflow.python.keras.losses",
|
||||
"tensorflow.python.keras.metrics",
|
||||
"tensorflow.python.keras.models",
|
||||
"tensorflow.python.keras.ops",
|
||||
"tensorflow.python.keras.optimizers",
|
||||
"tensorflow.python.keras.premade.linear",
|
||||
"tensorflow.python.keras.premade.wide_deep",
|
||||
"tensorflow.python.keras.preprocessing.image",
|
||||
"tensorflow.python.keras.preprocessing.sequence",
|
||||
"tensorflow.python.keras.preprocessing.text",
|
||||
"tensorflow.python.keras.regularizers",
|
||||
"tensorflow.python.keras.saving.model_config",
|
||||
"tensorflow.python.keras.saving.save",
|
||||
|
@ -32,6 +32,7 @@ from tensorflow.python.eager import context
|
||||
from tensorflow.python.eager import test
|
||||
from tensorflow.python.framework import random_seed
|
||||
from tensorflow.python.keras.distribute import distributed_training_utils
|
||||
from tensorflow.python.keras.preprocessing import sequence
|
||||
from tensorflow.python.util import nest
|
||||
|
||||
_RANDOM_SEED = 1337
|
||||
@ -619,7 +620,7 @@ class TestDistributionStrategyEmbeddingModelCorrectnessBase(
|
||||
labels.append(label)
|
||||
features.append(word_ids)
|
||||
|
||||
features = keras.preprocessing.sequence.pad_sequences(
|
||||
features = sequence.pad_sequences(
|
||||
features, maxlen=max_words)
|
||||
x_train = np.asarray(features, dtype=np.float32)
|
||||
y_train = np.asarray(labels, dtype=np.int32).reshape((count, 1))
|
||||
|
@ -29,10 +29,6 @@ from tensorflow.python.keras.utils import all_utils as utils
|
||||
keras_preprocessing.set_keras_submodules(backend=backend, utils=utils)
|
||||
|
||||
|
||||
from tensorflow.python.keras.preprocessing import image
|
||||
from tensorflow.python.keras.preprocessing import sequence
|
||||
from tensorflow.python.keras.preprocessing import text
|
||||
|
||||
del absolute_import
|
||||
del division
|
||||
del print_function
|
||||
|
@ -24,7 +24,7 @@ import tempfile
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.keras.preprocessing import image as preprocessing_image
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
try:
|
||||
@ -41,11 +41,11 @@ def _generate_test_images():
|
||||
bias = np.random.rand(img_w, img_h, 1) * 64
|
||||
variance = np.random.rand(img_w, img_h, 1) * (255 - 64)
|
||||
imarray = np.random.rand(img_w, img_h, 3) * variance + bias
|
||||
im = keras.preprocessing.image.array_to_img(imarray, scale=False)
|
||||
im = preprocessing_image.array_to_img(imarray, scale=False)
|
||||
rgb_images.append(im)
|
||||
|
||||
imarray = np.random.rand(img_w, img_h, 1) * variance + bias
|
||||
im = keras.preprocessing.image.array_to_img(imarray, scale=False)
|
||||
im = preprocessing_image.array_to_img(imarray, scale=False)
|
||||
gray_images.append(im)
|
||||
|
||||
return [rgb_images, gray_images]
|
||||
@ -60,10 +60,10 @@ class TestImage(test.TestCase):
|
||||
for test_images in _generate_test_images():
|
||||
img_list = []
|
||||
for im in test_images:
|
||||
img_list.append(keras.preprocessing.image.img_to_array(im)[None, ...])
|
||||
img_list.append(preprocessing_image.img_to_array(im)[None, ...])
|
||||
|
||||
images = np.vstack(img_list)
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
featurewise_center=True,
|
||||
samplewise_center=True,
|
||||
featurewise_std_normalization=True,
|
||||
@ -96,10 +96,10 @@ class TestImage(test.TestCase):
|
||||
|
||||
def test_image_data_generator_with_split_value_error(self):
|
||||
with self.assertRaises(ValueError):
|
||||
keras.preprocessing.image.ImageDataGenerator(validation_split=5)
|
||||
preprocessing_image.ImageDataGenerator(validation_split=5)
|
||||
|
||||
def test_image_data_generator_invalid_data(self):
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
featurewise_center=True,
|
||||
samplewise_center=True,
|
||||
featurewise_std_normalization=True,
|
||||
@ -119,14 +119,14 @@ class TestImage(test.TestCase):
|
||||
generator.flow(x)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
data_format='unknown')
|
||||
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
zoom_range=(2, 2))
|
||||
|
||||
def test_image_data_generator_fit(self):
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
featurewise_center=True,
|
||||
samplewise_center=True,
|
||||
featurewise_std_normalization=True,
|
||||
@ -139,7 +139,7 @@ class TestImage(test.TestCase):
|
||||
# Test RBG
|
||||
x = np.random.random((32, 10, 10, 3))
|
||||
generator.fit(x)
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
featurewise_center=True,
|
||||
samplewise_center=True,
|
||||
featurewise_std_normalization=True,
|
||||
@ -192,14 +192,14 @@ class TestImage(test.TestCase):
|
||||
|
||||
# Test image loading util
|
||||
fname = os.path.join(temp_dir, filenames[0])
|
||||
_ = keras.preprocessing.image.load_img(fname)
|
||||
_ = keras.preprocessing.image.load_img(fname, grayscale=True)
|
||||
_ = keras.preprocessing.image.load_img(fname, target_size=(10, 10))
|
||||
_ = keras.preprocessing.image.load_img(fname, target_size=(10, 10),
|
||||
interpolation='bilinear')
|
||||
_ = preprocessing_image.load_img(fname)
|
||||
_ = preprocessing_image.load_img(fname, grayscale=True)
|
||||
_ = preprocessing_image.load_img(fname, target_size=(10, 10))
|
||||
_ = preprocessing_image.load_img(fname, target_size=(10, 10),
|
||||
interpolation='bilinear')
|
||||
|
||||
# create iterator
|
||||
generator = keras.preprocessing.image.ImageDataGenerator()
|
||||
generator = preprocessing_image.ImageDataGenerator()
|
||||
dir_iterator = generator.flow_from_directory(temp_dir)
|
||||
|
||||
# check number of classes and images
|
||||
@ -223,7 +223,7 @@ class TestImage(test.TestCase):
|
||||
return np.zeros_like(x)
|
||||
|
||||
# Test usage as Sequence
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
preprocessing_function=preprocessing_function)
|
||||
dir_seq = generator.flow_from_directory(
|
||||
str(temp_dir),
|
||||
@ -276,7 +276,7 @@ class TestImage(test.TestCase):
|
||||
count += 1
|
||||
|
||||
# create iterator
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
validation_split=validation_split)
|
||||
|
||||
with self.assertRaises(ValueError):
|
||||
@ -317,32 +317,32 @@ class TestImage(test.TestCase):
|
||||
|
||||
# Test channels_first data format
|
||||
x = np.random.random((3, height, width))
|
||||
img = keras.preprocessing.image.array_to_img(
|
||||
img = preprocessing_image.array_to_img(
|
||||
x, data_format='channels_first')
|
||||
self.assertEqual(img.size, (width, height))
|
||||
x = keras.preprocessing.image.img_to_array(
|
||||
x = preprocessing_image.img_to_array(
|
||||
img, data_format='channels_first')
|
||||
self.assertEqual(x.shape, (3, height, width))
|
||||
# Test 2D
|
||||
x = np.random.random((1, height, width))
|
||||
img = keras.preprocessing.image.array_to_img(
|
||||
img = preprocessing_image.array_to_img(
|
||||
x, data_format='channels_first')
|
||||
self.assertEqual(img.size, (width, height))
|
||||
x = keras.preprocessing.image.img_to_array(
|
||||
x = preprocessing_image.img_to_array(
|
||||
img, data_format='channels_first')
|
||||
self.assertEqual(x.shape, (1, height, width))
|
||||
|
||||
# Test channels_last data format
|
||||
x = np.random.random((height, width, 3))
|
||||
img = keras.preprocessing.image.array_to_img(x, data_format='channels_last')
|
||||
img = preprocessing_image.array_to_img(x, data_format='channels_last')
|
||||
self.assertEqual(img.size, (width, height))
|
||||
x = keras.preprocessing.image.img_to_array(img, data_format='channels_last')
|
||||
x = preprocessing_image.img_to_array(img, data_format='channels_last')
|
||||
self.assertEqual(x.shape, (height, width, 3))
|
||||
# Test 2D
|
||||
x = np.random.random((height, width, 1))
|
||||
img = keras.preprocessing.image.array_to_img(x, data_format='channels_last')
|
||||
img = preprocessing_image.array_to_img(x, data_format='channels_last')
|
||||
self.assertEqual(img.size, (width, height))
|
||||
x = keras.preprocessing.image.img_to_array(img, data_format='channels_last')
|
||||
x = preprocessing_image.img_to_array(img, data_format='channels_last')
|
||||
self.assertEqual(x.shape, (height, width, 1))
|
||||
|
||||
def test_batch_standardize(self):
|
||||
@ -353,10 +353,10 @@ class TestImage(test.TestCase):
|
||||
for test_images in _generate_test_images():
|
||||
img_list = []
|
||||
for im in test_images:
|
||||
img_list.append(keras.preprocessing.image.img_to_array(im)[None, ...])
|
||||
img_list.append(preprocessing_image.img_to_array(im)[None, ...])
|
||||
|
||||
images = np.vstack(img_list)
|
||||
generator = keras.preprocessing.image.ImageDataGenerator(
|
||||
generator = preprocessing_image.ImageDataGenerator(
|
||||
featurewise_center=True,
|
||||
samplewise_center=True,
|
||||
featurewise_std_normalization=True,
|
||||
@ -382,15 +382,15 @@ class TestImage(test.TestCase):
|
||||
|
||||
def test_img_transforms(self):
|
||||
x = np.random.random((3, 200, 200))
|
||||
_ = keras.preprocessing.image.random_rotation(x, 20)
|
||||
_ = keras.preprocessing.image.random_shift(x, 0.2, 0.2)
|
||||
_ = keras.preprocessing.image.random_shear(x, 2.)
|
||||
_ = keras.preprocessing.image.random_zoom(x, (0.5, 0.5))
|
||||
_ = keras.preprocessing.image.apply_channel_shift(x, 2, 2)
|
||||
_ = keras.preprocessing.image.apply_affine_transform(x, 2)
|
||||
_ = preprocessing_image.random_rotation(x, 20)
|
||||
_ = preprocessing_image.random_shift(x, 0.2, 0.2)
|
||||
_ = preprocessing_image.random_shear(x, 2.)
|
||||
_ = preprocessing_image.random_zoom(x, (0.5, 0.5))
|
||||
_ = preprocessing_image.apply_channel_shift(x, 2, 2)
|
||||
_ = preprocessing_image.apply_affine_transform(x, 2)
|
||||
with self.assertRaises(ValueError):
|
||||
keras.preprocessing.image.random_zoom(x, (0, 0, 0))
|
||||
_ = keras.preprocessing.image.random_channel_shift(x, 2.)
|
||||
preprocessing_image.random_zoom(x, (0, 0, 0))
|
||||
_ = preprocessing_image.random_channel_shift(x, 2.)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
@ -22,7 +22,7 @@ from math import ceil
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.keras.preprocessing import sequence as preprocessing_sequence
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
|
||||
@ -32,65 +32,65 @@ class TestSequence(test.TestCase):
|
||||
a = [[1], [1, 2], [1, 2, 3]]
|
||||
|
||||
# test padding
|
||||
b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='pre')
|
||||
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
|
||||
self.assertAllClose(b, [[0, 0, 1], [0, 1, 2], [1, 2, 3]])
|
||||
b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='post')
|
||||
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='post')
|
||||
self.assertAllClose(b, [[1, 0, 0], [1, 2, 0], [1, 2, 3]])
|
||||
|
||||
# test truncating
|
||||
b = keras.preprocessing.sequence.pad_sequences(
|
||||
b = preprocessing_sequence.pad_sequences(
|
||||
a, maxlen=2, truncating='pre')
|
||||
self.assertAllClose(b, [[0, 1], [1, 2], [2, 3]])
|
||||
b = keras.preprocessing.sequence.pad_sequences(
|
||||
b = preprocessing_sequence.pad_sequences(
|
||||
a, maxlen=2, truncating='post')
|
||||
self.assertAllClose(b, [[0, 1], [1, 2], [1, 2]])
|
||||
|
||||
# test value
|
||||
b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, value=1)
|
||||
b = preprocessing_sequence.pad_sequences(a, maxlen=3, value=1)
|
||||
self.assertAllClose(b, [[1, 1, 1], [1, 1, 2], [1, 2, 3]])
|
||||
|
||||
def test_pad_sequences_vector(self):
|
||||
a = [[[1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]
|
||||
|
||||
# test padding
|
||||
b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='pre')
|
||||
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='pre')
|
||||
self.assertAllClose(b, [[[0, 0], [0, 0], [1, 1]], [[0, 0], [2, 1], [2, 2]],
|
||||
[[3, 1], [3, 2], [3, 3]]])
|
||||
b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, padding='post')
|
||||
b = preprocessing_sequence.pad_sequences(a, maxlen=3, padding='post')
|
||||
self.assertAllClose(b, [[[1, 1], [0, 0], [0, 0]], [[2, 1], [2, 2], [0, 0]],
|
||||
[[3, 1], [3, 2], [3, 3]]])
|
||||
|
||||
# test truncating
|
||||
b = keras.preprocessing.sequence.pad_sequences(
|
||||
b = preprocessing_sequence.pad_sequences(
|
||||
a, maxlen=2, truncating='pre')
|
||||
self.assertAllClose(b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 2], [3,
|
||||
3]]])
|
||||
|
||||
b = keras.preprocessing.sequence.pad_sequences(
|
||||
b = preprocessing_sequence.pad_sequences(
|
||||
a, maxlen=2, truncating='post')
|
||||
self.assertAllClose(b, [[[0, 0], [1, 1]], [[2, 1], [2, 2]], [[3, 1], [3,
|
||||
2]]])
|
||||
|
||||
# test value
|
||||
b = keras.preprocessing.sequence.pad_sequences(a, maxlen=3, value=1)
|
||||
b = preprocessing_sequence.pad_sequences(a, maxlen=3, value=1)
|
||||
self.assertAllClose(b, [[[1, 1], [1, 1], [1, 1]], [[1, 1], [2, 1], [2, 2]],
|
||||
[[3, 1], [3, 2], [3, 3]]])
|
||||
|
||||
def test_make_sampling_table(self):
|
||||
a = keras.preprocessing.sequence.make_sampling_table(3)
|
||||
a = preprocessing_sequence.make_sampling_table(3)
|
||||
self.assertAllClose(
|
||||
a, np.asarray([0.00315225, 0.00315225, 0.00547597]), rtol=.1)
|
||||
|
||||
def test_skipgrams(self):
|
||||
# test with no window size and binary labels
|
||||
couples, labels = keras.preprocessing.sequence.skipgrams(
|
||||
couples, labels = preprocessing_sequence.skipgrams(
|
||||
np.arange(3), vocabulary_size=3)
|
||||
for couple in couples:
|
||||
self.assertIn(couple[0], [0, 1, 2])
|
||||
self.assertIn(couple[1], [0, 1, 2])
|
||||
|
||||
# test window size and categorical labels
|
||||
couples, labels = keras.preprocessing.sequence.skipgrams(
|
||||
couples, labels = preprocessing_sequence.skipgrams(
|
||||
np.arange(5), vocabulary_size=5, window_size=1, categorical=True)
|
||||
for couple in couples:
|
||||
self.assertLessEqual(couple[0] - couple[1], 3)
|
||||
@ -100,7 +100,7 @@ class TestSequence(test.TestCase):
|
||||
def test_remove_long_seq(self):
|
||||
a = [[[1, 1]], [[2, 1], [2, 2]], [[3, 1], [3, 2], [3, 3]]]
|
||||
|
||||
new_seq, new_label = keras.preprocessing.sequence._remove_long_seq(
|
||||
new_seq, new_label = preprocessing_sequence._remove_long_seq(
|
||||
maxlen=3, seq=a, label=['a', 'b', ['c', 'd']])
|
||||
self.assertEqual(new_seq, [[[1, 1]], [[2, 1], [2, 2]]])
|
||||
self.assertEqual(new_label, ['a', 'b'])
|
||||
@ -109,7 +109,7 @@ class TestSequence(test.TestCase):
|
||||
data = np.array([[i] for i in range(50)])
|
||||
targets = np.array([[i] for i in range(50)])
|
||||
|
||||
data_gen = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
data_gen = preprocessing_sequence.TimeseriesGenerator(
|
||||
data, targets, length=10, sampling_rate=2, batch_size=2)
|
||||
self.assertEqual(len(data_gen), 20)
|
||||
self.assertAllClose(data_gen[0][0],
|
||||
@ -121,7 +121,7 @@ class TestSequence(test.TestCase):
|
||||
[9], [11]]]))
|
||||
self.assertAllClose(data_gen[1][1], np.array([[12], [13]]))
|
||||
|
||||
data_gen = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
data_gen = preprocessing_sequence.TimeseriesGenerator(
|
||||
data, targets, length=10, sampling_rate=2, reverse=True, batch_size=2)
|
||||
self.assertEqual(len(data_gen), 20)
|
||||
self.assertAllClose(data_gen[0][0],
|
||||
@ -129,7 +129,7 @@ class TestSequence(test.TestCase):
|
||||
[3], [1]]]))
|
||||
self.assertAllClose(data_gen[0][1], np.array([[10], [11]]))
|
||||
|
||||
data_gen = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
data_gen = preprocessing_sequence.TimeseriesGenerator(
|
||||
data, targets, length=10, sampling_rate=2, shuffle=True, batch_size=1)
|
||||
batch = data_gen[0]
|
||||
r = batch[1][0][0]
|
||||
@ -140,7 +140,7 @@ class TestSequence(test.TestCase):
|
||||
[r],
|
||||
]))
|
||||
|
||||
data_gen = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
data_gen = preprocessing_sequence.TimeseriesGenerator(
|
||||
data, targets, length=10, sampling_rate=2, stride=2, batch_size=2)
|
||||
self.assertEqual(len(data_gen), 10)
|
||||
self.assertAllClose(data_gen[1][0],
|
||||
@ -148,7 +148,7 @@ class TestSequence(test.TestCase):
|
||||
[12], [14]]]))
|
||||
self.assertAllClose(data_gen[1][1], np.array([[14], [16]]))
|
||||
|
||||
data_gen = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
data_gen = preprocessing_sequence.TimeseriesGenerator(
|
||||
data,
|
||||
targets,
|
||||
length=10,
|
||||
@ -164,7 +164,7 @@ class TestSequence(test.TestCase):
|
||||
|
||||
data = np.array([np.random.random_sample((1, 2, 3, 4)) for i in range(50)])
|
||||
targets = np.array([np.random.random_sample((3, 2, 1)) for i in range(50)])
|
||||
data_gen = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
data_gen = preprocessing_sequence.TimeseriesGenerator(
|
||||
data,
|
||||
targets,
|
||||
length=10,
|
||||
@ -181,7 +181,7 @@ class TestSequence(test.TestCase):
|
||||
self.assertAllClose(data_gen[0][1], np.array([targets[20], targets[21]]))
|
||||
|
||||
with self.assertRaises(ValueError) as context:
|
||||
keras.preprocessing.sequence.TimeseriesGenerator(data, targets, length=50)
|
||||
preprocessing_sequence.TimeseriesGenerator(data, targets, length=50)
|
||||
error = str(context.exception)
|
||||
self.assertIn('`start_index+length=50 > end_index=49` is disallowed', error)
|
||||
|
||||
@ -189,7 +189,7 @@ class TestSequence(test.TestCase):
|
||||
x = np.array([[i] for i in range(10)])
|
||||
|
||||
for length in range(3, 10):
|
||||
g = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
g = preprocessing_sequence.TimeseriesGenerator(
|
||||
x, x, length=length, batch_size=1)
|
||||
expected = max(0, len(x) - length)
|
||||
actual = len(g)
|
||||
@ -211,7 +211,7 @@ class TestSequence(test.TestCase):
|
||||
|
||||
for stride, length, batch_size, shuffle in zip(strides, lengths,
|
||||
batch_sizes, shuffles):
|
||||
g = keras.preprocessing.sequence.TimeseriesGenerator(
|
||||
g = preprocessing_sequence.TimeseriesGenerator(
|
||||
x,
|
||||
x,
|
||||
length=length,
|
||||
|
@ -21,7 +21,7 @@ from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
|
||||
from tensorflow.python import keras
|
||||
from tensorflow.python.keras.preprocessing import text as preprocessing_text
|
||||
from tensorflow.python.platform import test
|
||||
|
||||
|
||||
@ -29,14 +29,14 @@ class TestText(test.TestCase):
|
||||
|
||||
def test_one_hot(self):
|
||||
text = 'The cat sat on the mat.'
|
||||
encoded = keras.preprocessing.text.one_hot(text, 5)
|
||||
encoded = preprocessing_text.one_hot(text, 5)
|
||||
self.assertEqual(len(encoded), 6)
|
||||
self.assertLessEqual(np.max(encoded), 4)
|
||||
self.assertGreaterEqual(np.min(encoded), 0)
|
||||
|
||||
# Test on unicode.
|
||||
text = u'The cat sat on the mat.'
|
||||
encoded = keras.preprocessing.text.one_hot(text, 5)
|
||||
encoded = preprocessing_text.one_hot(text, 5)
|
||||
self.assertEqual(len(encoded), 6)
|
||||
self.assertLessEqual(np.max(encoded), 4)
|
||||
self.assertGreaterEqual(np.min(encoded), 0)
|
||||
@ -47,7 +47,7 @@ class TestText(test.TestCase):
|
||||
'The dog sat on the log.',
|
||||
'Dogs and cats living together.'
|
||||
]
|
||||
tokenizer = keras.preprocessing.text.Tokenizer(num_words=10)
|
||||
tokenizer = preprocessing_text.Tokenizer(num_words=10)
|
||||
tokenizer.fit_on_texts(texts)
|
||||
|
||||
sequences = []
|
||||
@ -64,14 +64,14 @@ class TestText(test.TestCase):
|
||||
|
||||
def test_hashing_trick_hash(self):
|
||||
text = 'The cat sat on the mat.'
|
||||
encoded = keras.preprocessing.text.hashing_trick(text, 5)
|
||||
encoded = preprocessing_text.hashing_trick(text, 5)
|
||||
self.assertEqual(len(encoded), 6)
|
||||
self.assertLessEqual(np.max(encoded), 4)
|
||||
self.assertGreaterEqual(np.min(encoded), 1)
|
||||
|
||||
def test_hashing_trick_md5(self):
|
||||
text = 'The cat sat on the mat.'
|
||||
encoded = keras.preprocessing.text.hashing_trick(
|
||||
encoded = preprocessing_text.hashing_trick(
|
||||
text, 5, hash_function='md5')
|
||||
self.assertEqual(len(encoded), 6)
|
||||
self.assertLessEqual(np.max(encoded), 4)
|
||||
@ -82,13 +82,13 @@ class TestText(test.TestCase):
|
||||
x_test = ['This text has some unknown words'] # 2 OOVs: some, unknown
|
||||
|
||||
# Default, without OOV flag
|
||||
tokenizer = keras.preprocessing.text.Tokenizer()
|
||||
tokenizer = preprocessing_text.Tokenizer()
|
||||
tokenizer.fit_on_texts(x_train)
|
||||
x_test_seq = tokenizer.texts_to_sequences(x_test)
|
||||
self.assertEqual(len(x_test_seq[0]), 4) # discards 2 OOVs
|
||||
|
||||
# With OOV feature
|
||||
tokenizer = keras.preprocessing.text.Tokenizer(oov_token='<unk>')
|
||||
tokenizer = preprocessing_text.Tokenizer(oov_token='<unk>')
|
||||
tokenizer.fit_on_texts(x_train)
|
||||
x_test_seq = tokenizer.texts_to_sequences(x_test)
|
||||
self.assertEqual(len(x_test_seq[0]), 6) # OOVs marked in place
|
||||
@ -100,7 +100,7 @@ class TestText(test.TestCase):
|
||||
]
|
||||
word_sequences = [['The', 'cat', 'is', 'sitting'],
|
||||
['The', 'dog', 'is', 'standing']]
|
||||
tokenizer = keras.preprocessing.text.Tokenizer()
|
||||
tokenizer = preprocessing_text.Tokenizer()
|
||||
tokenizer.fit_on_texts(texts)
|
||||
tokenizer.fit_on_texts(word_sequences)
|
||||
|
||||
@ -111,29 +111,29 @@ class TestText(test.TestCase):
|
||||
|
||||
def test_text_to_word_sequence(self):
|
||||
text = 'hello! ? world!'
|
||||
seq = keras.preprocessing.text.text_to_word_sequence(text)
|
||||
seq = preprocessing_text.text_to_word_sequence(text)
|
||||
self.assertEqual(seq, ['hello', 'world'])
|
||||
|
||||
def test_text_to_word_sequence_multichar_split(self):
|
||||
text = 'hello!stop?world!'
|
||||
seq = keras.preprocessing.text.text_to_word_sequence(text, split='stop')
|
||||
seq = preprocessing_text.text_to_word_sequence(text, split='stop')
|
||||
self.assertEqual(seq, ['hello', 'world'])
|
||||
|
||||
def test_text_to_word_sequence_unicode(self):
|
||||
text = u'ali! veli? kırk dokuz elli'
|
||||
seq = keras.preprocessing.text.text_to_word_sequence(text)
|
||||
seq = preprocessing_text.text_to_word_sequence(text)
|
||||
self.assertEqual(seq, [u'ali', u'veli', u'kırk', u'dokuz', u'elli'])
|
||||
|
||||
def test_text_to_word_sequence_unicode_multichar_split(self):
|
||||
text = u'ali!stopveli?stopkırkstopdokuzstopelli'
|
||||
seq = keras.preprocessing.text.text_to_word_sequence(text, split='stop')
|
||||
seq = preprocessing_text.text_to_word_sequence(text, split='stop')
|
||||
self.assertEqual(seq, [u'ali', u'veli', u'kırk', u'dokuz', u'elli'])
|
||||
|
||||
def test_tokenizer_unicode(self):
|
||||
texts = [
|
||||
u'ali veli kırk dokuz elli', u'ali veli kırk dokuz elli veli kırk dokuz'
|
||||
]
|
||||
tokenizer = keras.preprocessing.text.Tokenizer(num_words=5)
|
||||
tokenizer = preprocessing_text.Tokenizer(num_words=5)
|
||||
tokenizer.fit_on_texts(texts)
|
||||
|
||||
self.assertEqual(len(tokenizer.word_counts), 5)
|
||||
|
@ -44,7 +44,6 @@ _TENSORFLOW_DOC_SOURCES = {
|
||||
'gfile': DocSource(docstring_module_name='platform.gfile'),
|
||||
'graph_util': DocSource(docstring_module_name='framework.graph_util'),
|
||||
'image': DocSource(docstring_module_name='ops.image_ops'),
|
||||
'keras.estimator': DocSource(docstring_module_name='keras.estimator'),
|
||||
'linalg': DocSource(docstring_module_name='ops.linalg_ops'),
|
||||
'logging': DocSource(docstring_module_name='ops.logging_ops'),
|
||||
'losses': DocSource(docstring_module_name='ops.losses.losses'),
|
||||
|
Loading…
Reference in New Issue
Block a user