Merge pull request #39134 from yongtang:36790-tf.metrics.Recall-backend-float64

PiperOrigin-RevId: 313606803
Change-Id: Idbb4244c62fe797815ea40ae1297c0346c65983e
This commit is contained in:
TensorFlower Gardener 2020-05-28 10:01:00 -07:00
commit eded0b5744
2 changed files with 34 additions and 14 deletions

View File

@ -33,6 +33,7 @@ from tensorflow.python.framework import dtypes
from tensorflow.python.framework import errors_impl
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.keras import backend
from tensorflow.python.keras import combinations
from tensorflow.python.keras import keras_parameterized
from tensorflow.python.keras import layers
@ -2247,6 +2248,23 @@ class ResetStatesTest(keras_parameterized.TestCase):
self.assertArrayNear(self.evaluate(m_obj.total_cm)[0], [1, 0], 1e-1)
self.assertArrayNear(self.evaluate(m_obj.total_cm)[1], [3, 0], 1e-1)
def test_reset_states_recall_float64(self):
# Test case for GitHub issue 36790.
try:
backend.set_floatx('float64')
r_obj = metrics.Recall()
model = _get_model([r_obj])
x = np.concatenate((np.ones((50, 4)), np.zeros((50, 4))))
y = np.concatenate((np.ones((50, 1)), np.ones((50, 1))))
model.evaluate(x, y)
self.assertEqual(self.evaluate(r_obj.true_positives), 50.)
self.assertEqual(self.evaluate(r_obj.false_negatives), 50.)
model.evaluate(x, y)
self.assertEqual(self.evaluate(r_obj.true_positives), 50.)
self.assertEqual(self.evaluate(r_obj.false_negatives), 50.)
finally:
backend.set_floatx('float32')
if __name__ == '__main__':
test.main()

View File

@ -299,9 +299,19 @@ def update_confusion_matrix_variables(variables_to_update,
'`multi_label` is True.')
if variables_to_update is None:
return
y_true = math_ops.cast(y_true, dtype=dtypes.float32)
y_pred = math_ops.cast(y_pred, dtype=dtypes.float32)
thresholds = ops.convert_to_tensor_v2(thresholds, dtype=dtypes.float32)
if not any(
key for key in variables_to_update if key in list(ConfusionMatrix)):
raise ValueError(
'Please provide at least one valid confusion matrix '
'variable to update. Valid variable key options are: "{}". '
'Received: "{}"'.format(
list(ConfusionMatrix), variables_to_update.keys()))
variable_dtype = list(variables_to_update.values())[0].dtype
y_true = math_ops.cast(y_true, dtype=variable_dtype)
y_pred = math_ops.cast(y_pred, dtype=variable_dtype)
thresholds = ops.convert_to_tensor_v2(thresholds, dtype=variable_dtype)
num_thresholds = thresholds.shape[0]
if multi_label:
one_thresh = math_ops.equal(
@ -314,14 +324,6 @@ def update_confusion_matrix_variables(variables_to_update,
sample_weight)
one_thresh = math_ops.cast(True, dtype=dtypes.bool)
if not any(
key for key in variables_to_update if key in list(ConfusionMatrix)):
raise ValueError(
'Please provide at least one valid confusion matrix '
'variable to update. Valid variable key options are: "{}". '
'Received: "{}"'.format(
list(ConfusionMatrix), variables_to_update.keys()))
invalid_keys = [
key for key in variables_to_update if key not in list(ConfusionMatrix)
]
@ -401,7 +403,7 @@ def update_confusion_matrix_variables(variables_to_update,
if sample_weight is not None:
sample_weight = weights_broadcast_ops.broadcast_weights(
math_ops.cast(sample_weight, dtype=dtypes.float32), y_pred)
math_ops.cast(sample_weight, dtype=variable_dtype), y_pred)
weights_tiled = array_ops.tile(
array_ops.reshape(sample_weight, thresh_tiles), data_tiles)
else:
@ -422,9 +424,9 @@ def update_confusion_matrix_variables(variables_to_update,
def weighted_assign_add(label, pred, weights, var):
label_and_pred = math_ops.cast(
math_ops.logical_and(label, pred), dtype=dtypes.float32)
math_ops.logical_and(label, pred), dtype=var.dtype)
if weights is not None:
label_and_pred *= weights
label_and_pred *= math_ops.cast(weights, dtype=var.dtype)
return var.assign_add(math_ops.reduce_sum(label_and_pred, 1))
loop_vars = {