diff --git a/tensorflow/contrib/distributions/BUILD b/tensorflow/contrib/distributions/BUILD
index 145b9495ff4..b2c641f8ab3 100644
--- a/tensorflow/contrib/distributions/BUILD
+++ b/tensorflow/contrib/distributions/BUILD
@@ -204,6 +204,24 @@ cuda_py_test(
     ],
 )
 
+cuda_py_test(
+    name = "half_normal_test",
+    size = "medium",
+    srcs = ["python/kernel_tests/half_normal_test.py"],
+    additional_deps = [
+        ":distributions_py",
+        "//third_party/py/numpy",
+        "//tensorflow/python:client",
+        "//tensorflow/python:client_testlib",
+        "//tensorflow/python:framework_for_generated_wrappers",
+        "//tensorflow/python:framework_test_lib",
+        "//tensorflow/python:gradients",
+        "//tensorflow/python:nn_ops",
+        "//tensorflow/python:platform_test",
+        "//tensorflow/python:variables",
+    ],
+)
+
 cuda_py_test(
     name = "inverse_gamma_test",
     srcs = ["python/kernel_tests/inverse_gamma_test.py"],
diff --git a/tensorflow/contrib/distributions/__init__.py b/tensorflow/contrib/distributions/__init__.py
index 0d12d838932..66827179e9f 100644
--- a/tensorflow/contrib/distributions/__init__.py
+++ b/tensorflow/contrib/distributions/__init__.py
@@ -36,6 +36,7 @@ from tensorflow.contrib.distributions.python.ops.distribution_util import softpl
 from tensorflow.contrib.distributions.python.ops.distribution_util import tridiag
 from tensorflow.contrib.distributions.python.ops.estimator import *
 from tensorflow.contrib.distributions.python.ops.geometric import *
+from tensorflow.contrib.distributions.python.ops.half_normal import *
 from tensorflow.contrib.distributions.python.ops.independent import *
 from tensorflow.contrib.distributions.python.ops.inverse_gamma import *
 from tensorflow.contrib.distributions.python.ops.logistic import *
@@ -107,6 +108,7 @@ _allowed_symbols = [
     'Gamma',
     'GammaWithSoftplusConcentrationRate',
     'Geometric',
+    'HalfNormal',
     'Independent',
     'InverseGamma',
     'InverseGammaWithSoftplusConcentrationRate',
diff --git a/tensorflow/contrib/distributions/python/kernel_tests/half_normal_test.py b/tensorflow/contrib/distributions/python/kernel_tests/half_normal_test.py
new file mode 100644
index 00000000000..a7571806f29
--- /dev/null
+++ b/tensorflow/contrib/distributions/python/kernel_tests/half_normal_test.py
@@ -0,0 +1,320 @@
+# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""Tests for initializers."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import importlib
+import numpy as np
+
+from tensorflow.python.framework import constant_op
+from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import ops
+from tensorflow.python.framework import tensor_shape
+from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import gradients_impl
+from tensorflow.python.ops import variables
+from tensorflow.contrib.distributions.python.ops import half_normal as hn_lib
+from tensorflow.python.platform import test
+from tensorflow.python.platform import tf_logging
+
+
+def try_import(name):  # pylint: disable=invalid-name
+  module = None
+  try:
+    module = importlib.import_module(name)
+  except ImportError as e:
+    tf_logging.warning("Could not import %s: %s" % (name, str(e)))
+  return module
+
+stats = try_import("scipy.stats")
+
+
+class HalfNormalTest(test.TestCase):
+
+  def setUp(self):
+    self._rng = np.random.RandomState(123)
+
+  def assertAllFinite(self, tensor):
+    is_finite = np.isfinite(tensor.eval())
+    all_true = np.ones_like(is_finite, dtype=np.bool)
+    self.assertAllEqual(all_true, is_finite)
+
+  def _testParamShapes(self, sample_shape, expected):
+    with self.test_session():
+      param_shapes = hn_lib.HalfNormal.param_shapes(sample_shape)
+      scale_shape = param_shapes["scale"]
+      self.assertAllEqual(expected, scale_shape.eval())
+      scale = array_ops.ones(scale_shape)
+      self.assertAllEqual(
+          expected,
+          array_ops.shape(hn_lib.HalfNormal(scale).sample()).eval())
+
+  def _testParamStaticShapes(self, sample_shape, expected):
+    param_shapes = hn_lib.HalfNormal.param_static_shapes(sample_shape)
+    scale_shape = param_shapes["scale"]
+    self.assertEqual(expected, scale_shape)
+
+  def _testBatchShapes(self, dist, tensor):
+    self.assertAllEqual(dist.batch_shape_tensor().eval(), tensor.shape)
+    self.assertAllEqual(dist.batch_shape_tensor().eval(), tensor.eval().shape)
+    self.assertAllEqual(dist.batch_shape, tensor.shape)
+    self.assertAllEqual(dist.batch_shape, tensor.eval().shape)
+
+  def testParamShapes(self):
+    sample_shape = [10, 3, 4]
+    self._testParamShapes(sample_shape, sample_shape)
+    self._testParamShapes(constant_op.constant(sample_shape), sample_shape)
+
+  def testParamStaticShapes(self):
+    sample_shape = [10, 3, 4]
+    self._testParamStaticShapes(sample_shape, sample_shape)
+    self._testParamStaticShapes(
+        tensor_shape.TensorShape(sample_shape), sample_shape)
+
+  def testHalfNormalLogPDF(self):
+    with self.test_session():
+      batch_size = 6
+      scale = constant_op.constant([3.0] * batch_size)
+      x = np.array([-2.5, 2.5, 4.0, 0.0, -1.0, 2.0], dtype=np.float32)
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      log_pdf = halfnorm.log_prob(x)
+      self._testBatchShapes(halfnorm, log_pdf)
+
+      pdf = halfnorm.prob(x)
+      self._testBatchShapes(halfnorm, pdf)
+
+      if not stats:
+        return
+      expected_log_pdf = stats.halfnorm(scale=scale.eval()).logpdf(x)
+      self.assertAllClose(expected_log_pdf, log_pdf.eval())
+      self.assertAllClose(np.exp(expected_log_pdf), pdf.eval())
+
+  def testHalfNormalLogPDFMultidimensional(self):
+    with self.test_session():
+      batch_size = 6
+      scale = constant_op.constant([[3.0, 1.0]] * batch_size)
+      x = np.array([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=np.float32).T
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      log_pdf = halfnorm.log_prob(x)
+      self._testBatchShapes(halfnorm, log_pdf)
+
+      pdf = halfnorm.prob(x)
+      self._testBatchShapes(halfnorm, pdf)
+
+      if not stats:
+        return
+      expected_log_pdf = stats.halfnorm(scale=scale.eval()).logpdf(x)
+      self.assertAllClose(expected_log_pdf, log_pdf.eval())
+      self.assertAllClose(np.exp(expected_log_pdf), pdf.eval())
+
+  def testHalfNormalCDF(self):
+    with self.test_session():
+      batch_size = 50
+      scale = self._rng.rand(batch_size) + 1.0
+      x = np.linspace(-8.0, 8.0, batch_size).astype(np.float64)
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      cdf = halfnorm.cdf(x)
+      self._testBatchShapes(halfnorm, cdf)
+
+      log_cdf = halfnorm.log_cdf(x)
+      self._testBatchShapes(halfnorm, log_cdf)
+
+      if not stats:
+        return
+      expected_logcdf = stats.halfnorm(scale=scale).logcdf(x)
+      self.assertAllClose(expected_logcdf, log_cdf.eval(), atol=0)
+      self.assertAllClose(np.exp(expected_logcdf), cdf.eval(), atol=0)
+
+  def testHalfNormalSurvivalFunction(self):
+    with self.test_session():
+      batch_size = 50
+      scale = self._rng.rand(batch_size) + 1.0
+      x = np.linspace(-8.0, 8.0, batch_size).astype(np.float64)
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      sf = halfnorm.survival_function(x)
+      self._testBatchShapes(halfnorm, sf)
+
+      log_sf = halfnorm.log_survival_function(x)
+      self._testBatchShapes(halfnorm, log_sf)
+
+      if not stats:
+        return
+      expected_logsf = stats.halfnorm(scale=scale).logsf(x)
+      self.assertAllClose(expected_logsf, log_sf.eval(), atol=0)
+      self.assertAllClose(np.exp(expected_logsf), sf.eval(), atol=0)
+
+  def testHalfNormalQuantile(self):
+    with self.test_session():
+      batch_size = 50
+      scale = self._rng.rand(batch_size) + 1.0
+      p = np.linspace(0., 1.0, batch_size).astype(np.float64)
+
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+      x = halfnorm.quantile(p)
+      self._testBatchShapes(halfnorm, x)
+
+      if not stats:
+        return
+      expected_x = stats.halfnorm(scale=scale).ppf(p)
+      self.assertAllClose(expected_x, x.eval(), atol=0)
+
+  def testFiniteGradients(self):
+    for dtype in [np.float32, np.float64]:
+      g = ops.Graph()
+      with g.as_default():
+        scale = variables.Variable(dtype(3.0))
+        dist = hn_lib.HalfNormal(scale=scale)
+        x = np.array([0.01, 0.1, 1., 5., 10.]).astype(dtype)
+        for func in [
+            dist.cdf, dist.log_cdf, dist.survival_function,
+            dist.log_prob, dist.prob, dist.log_survival_function,
+        ]:
+          print(func.__name__)
+          value = func(x)
+          grads = gradients_impl.gradients(value, [scale])
+          with self.test_session(graph=g):
+            variables.global_variables_initializer().run()
+            self.assertAllFinite(value)
+            self.assertAllFinite(grads[0])
+
+  def testHalfNormalEntropy(self):
+    with self.test_session():
+      scale = np.array([[1.0, 2.0, 3.0]])
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+      
+      # See https://en.wikipedia.org/wiki/Half-normal_distribution for the
+      # entropy formula used here.
+      expected_entropy = 0.5 * np.log(np.pi * scale ** 2.0 / 2.0) + 0.5
+
+      entropy = halfnorm.entropy()
+      self._testBatchShapes(halfnorm, entropy)
+      self.assertAllClose(expected_entropy, entropy.eval())
+
+  def testHalfNormalMeanAndMode(self):
+    with self.test_session():
+      scale = np.array([11., 12., 13.])
+
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+      expected_mean = scale * np.sqrt(2.0) / np.sqrt(np.pi)
+
+      self.assertAllEqual((3,), halfnorm.mean().eval().shape)
+      self.assertAllEqual(expected_mean, halfnorm.mean().eval())
+
+      self.assertAllEqual((3,), halfnorm.mode().eval().shape)
+      self.assertAllEqual([0., 0., 0.], halfnorm.mode().eval())
+
+  def testHalfNormalVariance(self):
+    with self.test_session():
+      scale = np.array([7., 7., 7.])
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+      expected_variance = scale ** 2.0 * (1.0 - 2.0 / np.pi)
+
+      self.assertAllEqual((3,), halfnorm.variance().eval().shape)
+      self.assertAllEqual(expected_variance, halfnorm.variance().eval())
+
+  def testHalfNormalStandardDeviation(self):
+    with self.test_session():
+      scale = np.array([7., 7., 7.])
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+      expected_variance = scale ** 2.0 * (1.0 - 2.0 / np.pi)
+
+      self.assertAllEqual((3,), halfnorm.stddev().shape)
+      self.assertAllEqual(np.sqrt(expected_variance), halfnorm.stddev().eval())
+
+  def testHalfNormalSample(self):
+    with self.test_session():
+      scale = constant_op.constant(3.0)
+      n = constant_op.constant(100000)
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      sample = halfnorm.sample(n)
+
+      self.assertEqual(sample.eval().shape, (100000,))
+      self.assertAllClose(sample.eval().mean(),
+                          3.0 * np.sqrt(2.0) / np.sqrt(np.pi), atol=1e-1)
+
+      expected_shape = tensor_shape.TensorShape([n.eval()]).concatenate(
+          tensor_shape.TensorShape(halfnorm.batch_shape_tensor().eval()))
+      self.assertAllEqual(expected_shape, sample.shape)
+      self.assertAllEqual(expected_shape, sample.eval().shape)
+
+      expected_shape_static = (tensor_shape.TensorShape(
+          [n.eval()]).concatenate(halfnorm.batch_shape))
+      self.assertAllEqual(expected_shape_static, sample.shape)
+      self.assertAllEqual(expected_shape_static, sample.eval().shape)
+
+  def testHalfNormalSampleMultiDimensional(self):
+    with self.test_session():
+      batch_size = 2
+      scale = constant_op.constant([[2.0, 3.0]] * batch_size)
+      n = constant_op.constant(100000)
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      sample = halfnorm.sample(n)
+      self.assertEqual(sample.shape, (100000, batch_size, 2))
+      self.assertAllClose(sample.eval()[:, 0, 0].mean(),
+                          2.0 * np.sqrt(2.0) / np.sqrt(np.pi), atol=1e-1)
+      self.assertAllClose(sample.eval()[:, 0, 1].mean(),
+                          3.0 * np.sqrt(2.0) / np.sqrt(np.pi), atol=1e-1)
+
+      expected_shape = tensor_shape.TensorShape([n.eval()]).concatenate(
+          tensor_shape.TensorShape(halfnorm.batch_shape_tensor().eval()))
+      self.assertAllEqual(expected_shape, sample.shape)
+      self.assertAllEqual(expected_shape, sample.eval().shape)
+
+      expected_shape_static = (tensor_shape.TensorShape(
+          [n.eval()]).concatenate(halfnorm.batch_shape))
+      self.assertAllEqual(expected_shape_static, sample.shape)
+      self.assertAllEqual(expected_shape_static, sample.eval().shape)
+
+  def testNegativeSigmaFails(self):
+    with self.test_session():
+      halfnorm = hn_lib.HalfNormal(scale=[-5.], validate_args=True, name="G")
+      with self.assertRaisesOpError("Condition x > 0 did not hold"):
+        halfnorm.mean().eval()
+
+  def testHalfNormalShape(self):
+    with self.test_session():
+      scale = constant_op.constant([6.0] * 5)
+      halfnorm = hn_lib.HalfNormal(scale=scale)
+
+      self.assertEqual(halfnorm.batch_shape_tensor().eval(), [5])
+      self.assertEqual(halfnorm.batch_shape, tensor_shape.TensorShape([5]))
+      self.assertAllEqual(halfnorm.event_shape_tensor().eval(), [])
+      self.assertEqual(halfnorm.event_shape, tensor_shape.TensorShape([]))
+
+  def testHalfNormalShapeWithPlaceholders(self):
+    scale = array_ops.placeholder(dtype=dtypes.float32)
+    halfnorm = hn_lib.HalfNormal(scale=scale)
+
+    with self.test_session() as sess:
+      # get_batch_shape should return an "<unknown>" tensor.
+      self.assertEqual(halfnorm.batch_shape, tensor_shape.TensorShape(None))
+      self.assertEqual(halfnorm.event_shape, ())
+      self.assertAllEqual(halfnorm.event_shape_tensor().eval(), [])
+      self.assertAllEqual(
+          sess.run(halfnorm.batch_shape_tensor(),
+                   feed_dict={scale: [1.0, 2.0]}), [2])
+
+
+if __name__ == "__main__":
+  test.main()
diff --git a/tensorflow/contrib/distributions/python/ops/half_normal.py b/tensorflow/contrib/distributions/python/ops/half_normal.py
new file mode 100644
index 00000000000..12059b6a9e1
--- /dev/null
+++ b/tensorflow/contrib/distributions/python/ops/half_normal.py
@@ -0,0 +1,170 @@
+# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+#     http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+# ==============================================================================
+"""The Half Normal distribution class."""
+
+from __future__ import absolute_import
+from __future__ import division
+from __future__ import print_function
+
+import numpy as np
+
+from tensorflow.python.framework import constant_op
+from tensorflow.python.framework import dtypes
+from tensorflow.python.framework import ops
+from tensorflow.python.framework import tensor_shape
+from tensorflow.python.ops import array_ops
+from tensorflow.python.ops import check_ops
+from tensorflow.python.ops import math_ops
+from tensorflow.python.ops import nn
+from tensorflow.python.ops import random_ops
+from tensorflow.python.ops.distributions import distribution
+from tensorflow.python.ops.distributions import special_math
+
+
+__all__ = [
+    "HalfNormal",
+]
+
+
+class HalfNormal(distribution.Distribution):
+  """The Half Normal distribution with scale `scale`.
+
+  #### Mathematical details
+
+  The half normal is a transformation of a centered normal distribution.
+  If some random variable `X` has normal distribution,
+  ```none
+  X ~ Normal(0.0, scale)
+  Y = |X|
+  ```
+  Then `Y` will have half normal distribution. The probability density
+  function (pdf) is:
+
+  ```none
+  pdf(x; scale, x > 0) = sqrt(2) / (scale * sqrt(pi)) *
+    exp(- 1/2 * (x / scale) ** 2)
+  )
+  ```
+  Where `scale = sigma` is the standard deviation of the underlying normal
+  distribution.
+
+  #### Examples
+
+  Examples of initialization of one or a batch of distributions.
+
+  ```python
+  # Define a single scalar HalfNormal distribution.
+  dist = tf.contrib.distributions.HalfNormal(scale=3.0)
+
+  # Evaluate the cdf at 1, returning a scalar.
+  dist.cdf(1.)
+
+  # Define a batch of two scalar valued HalfNormals.
+  # The first has scale 11.0, the second 22.0
+  dist = tf.contrib.distributions.HalfNormal(scale=[11.0, 22.0])
+
+  # Evaluate the pdf of the first distribution on 1.0, and the second on 1.5,
+  # returning a length two tensor.
+  dist.prob([1.0, 1.5])
+
+  # Get 3 samples, returning a 3 x 2 tensor.
+  dist.sample([3])
+  ```
+
+  """
+  def __init__(self,
+               scale,
+               validate_args=False,
+               allow_nan_stats=True,
+               name="HalfNormal"):
+    """Construct HalfNormals with scale `scale`.
+
+    Args:
+      scale: Floating point tensor; the scales of the distribution(s).
+        Must contain only positive values.
+      validate_args: Python `bool`, default `False`. When `True` distribution
+        parameters are checked for validity despite possibly degrading runtime
+        performance. When `False` invalid inputs may silently render incorrect
+        outputs.
+      allow_nan_stats: Python `bool`, default `True`. When `True`,
+        statistics (e.g., mean, mode, variance) use the value "`NaN`" to
+        indicate the result is undefined. When `False`, an exception is raised
+        if one or more of the statistic's batch members are undefined.
+      name: Python `str` name prefixed to Ops created by this class.
+    """
+    parameters = locals()
+    with ops.name_scope(name, values=[scale]):
+      with ops.control_dependencies([check_ops.assert_positive(scale)] if
+                                    validate_args else []):
+        self._scale = array_ops.identity(scale, name="scale")
+    super(HalfNormal, self).__init__(
+        dtype=self._scale.dtype,
+        reparameterization_type=distribution.FULLY_REPARAMETERIZED,
+        validate_args=validate_args,
+        allow_nan_stats=allow_nan_stats,
+        parameters=parameters,
+        graph_parents=[self._scale],
+        name=name)
+
+  @staticmethod
+  def _param_shapes(sample_shape):
+    return {'scale': ops.convert_to_tensor(sample_shape, dtype=dtypes.int32)}
+
+  @property
+  def scale(self):
+    """Distribution parameter for the scale."""
+    return self._scale
+
+  def _batch_shape_tensor(self):
+    return array_ops.shape(self.scale)
+
+  def _batch_shape(self):
+    return self.scale.shape
+
+  def _event_shape_tensor(self):
+    return constant_op.constant([], dtype=dtypes.int32)
+
+  def _event_shape(self):
+    return tensor_shape.scalar()
+
+  def _sample_n(self, n, seed=None):
+    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
+    sampled = random_ops.random_normal(
+        shape=shape, mean=0., stddev=1., dtype=self.dtype, seed=seed)
+    return math_ops.abs(sampled * self.scale)
+
+  def _prob(self, x):
+    coeff = np.sqrt(2) / self.scale / np.sqrt(np.pi)
+    pdf = coeff * math_ops.exp(- 0.5 * (x / self.scale) ** 2)
+    return pdf * math_ops.cast(x >= 0, self.dtype)
+
+  def _cdf(self, x):
+    truncated_x = nn.relu(x)
+    return math_ops.erf(truncated_x / self.scale / np.sqrt(2.0))
+
+  def _entropy(self):
+    return 0.5 * math_ops.log(np.pi * self.scale ** 2.0 / 2.0) + 0.5
+
+  def _mean(self):
+    return self.scale * np.sqrt(2.0) / np.sqrt(np.pi)
+
+  def _quantile(self, p):
+    return np.sqrt(2.0) * self.scale * special_math.erfinv(p)
+
+  def _mode(self):
+    return array_ops.zeros(self.batch_shape_tensor())
+
+  def _variance(self):
+    return self.scale ** 2.0 * (1.0 - 2.0 / np.pi)
diff --git a/tensorflow/python/kernel_tests/distributions/special_math_test.py b/tensorflow/python/kernel_tests/distributions/special_math_test.py
index 9441cdbe39e..2d434a39c29 100644
--- a/tensorflow/python/kernel_tests/distributions/special_math_test.py
+++ b/tensorflow/python/kernel_tests/distributions/special_math_test.py
@@ -332,6 +332,32 @@ class LogNdtrGradientTest(NdtrGradientTest):
   _use_log = True
 
 
+class ErfInvTest(test.TestCase):
+
+  def testErfInvValues(self):
+    with self.test_session():
+      if not special:
+        return
+
+      x = np.linspace(0., 1.0, 50).astype(np.float64)
+
+      expected_x = special.erfinv(x)
+      x = special_math.erfinv(x)
+      self.assertAllClose(expected_x, x.eval(), atol=0.)
+
+  def testErfInvIntegerInput(self):
+    with self.test_session():
+
+      with self.assertRaises(TypeError):
+        x = np.array([1, 2, 3]).astype(np.int32)
+        special_math.erfinv(x)
+
+      with self.assertRaises(TypeError):
+        x = np.array([1, 2, 3]).astype(np.int64)
+        special_math.erfinv(x)
+
+
+
 class LogCDFLaplaceTest(test.TestCase):
   # Note that scipy.stats.laplace does not have a stable Log CDF, so we cannot
   # rely on scipy to cross check the extreme values.
diff --git a/tensorflow/python/ops/distributions/special_math.py b/tensorflow/python/ops/distributions/special_math.py
index 222a39ad828..bed4cbb2c1a 100644
--- a/tensorflow/python/ops/distributions/special_math.py
+++ b/tensorflow/python/ops/distributions/special_math.py
@@ -27,6 +27,7 @@ from tensorflow.python.ops import array_ops
 from tensorflow.python.ops import math_ops
 
 __all__ = [
+    "erfinv",
     "ndtr",
     "ndtri",
     "log_ndtr",
@@ -350,6 +351,29 @@ def _log_ndtr_asymptotic_series(x, series_order):
   return 1. + even_sum - odd_sum
 
 
+def erfinv(x, name="erfinv"):
+  """The inverse function for erf, the error function.
+
+  Args:
+    x: `Tensor` of type `float32`, `float64`.
+    name: Python string. A name for the operation (default="erfinv").
+
+  Returns:
+    x: `Tensor` with `dtype=x.dtype`.
+
+  Raises:
+    TypeError: if `x` is not floating-type.
+  """
+
+  with ops.name_scope(name, values=[x]):
+    x = ops.convert_to_tensor(x, name="x")
+    if x.dtype.as_numpy_dtype not in [np.float32, np.float64]:
+      raise TypeError(
+          "x.dtype=%s is not handled, see docstring for supported types."
+          % x.dtype)
+    return ndtri((x + 1.0) / 2.0) / np.sqrt(2)
+
+
 def _double_factorial(n):
   """The double factorial function for small Python integer `n`."""
   return np.prod(np.arange(n, 1, -2))