Fix ValueError("None values not supported.") in the Abalone tutorial.
PiperOrigin-RevId: 161143481
This commit is contained in:
parent
f9c9cacb06
commit
eb8bebd670
@ -578,7 +578,12 @@ def model_fn(features, labels, mode, params):
|
|||||||
|
|
||||||
# Reshape output layer to 1-dim Tensor to return predictions
|
# Reshape output layer to 1-dim Tensor to return predictions
|
||||||
predictions = tf.reshape(output_layer, [-1])
|
predictions = tf.reshape(output_layer, [-1])
|
||||||
predictions_dict = {"ages": predictions}
|
|
||||||
|
# Provide an estimator spec for `ModeKeys.PREDICT`.
|
||||||
|
if mode == tf.estimator.ModeKeys.PREDICT:
|
||||||
|
return tf.estimator.EstimatorSpec(
|
||||||
|
mode=mode,
|
||||||
|
predictions={"ages": predictions})
|
||||||
|
|
||||||
# Calculate loss using mean squared error
|
# Calculate loss using mean squared error
|
||||||
loss = tf.losses.mean_squared_error(labels, predictions)
|
loss = tf.losses.mean_squared_error(labels, predictions)
|
||||||
@ -594,9 +599,9 @@ def model_fn(features, labels, mode, params):
|
|||||||
train_op = optimizer.minimize(
|
train_op = optimizer.minimize(
|
||||||
loss=loss, global_step=tf.train.get_global_step())
|
loss=loss, global_step=tf.train.get_global_step())
|
||||||
|
|
||||||
|
# Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
|
||||||
return tf.estimator.EstimatorSpec(
|
return tf.estimator.EstimatorSpec(
|
||||||
mode=mode,
|
mode=mode,
|
||||||
predictions=predictions_dict,
|
|
||||||
loss=loss,
|
loss=loss,
|
||||||
train_op=train_op,
|
train_op=train_op,
|
||||||
eval_metric_ops=eval_metric_ops)
|
eval_metric_ops=eval_metric_ops)
|
||||||
|
@ -87,25 +87,30 @@ def model_fn(features, labels, mode, params):
|
|||||||
|
|
||||||
# Reshape output layer to 1-dim Tensor to return predictions
|
# Reshape output layer to 1-dim Tensor to return predictions
|
||||||
predictions = tf.reshape(output_layer, [-1])
|
predictions = tf.reshape(output_layer, [-1])
|
||||||
predictions_dict = {"ages": predictions}
|
|
||||||
|
# Provide an estimator spec for `ModeKeys.PREDICT`.
|
||||||
|
if mode == tf.estimator.ModeKeys.PREDICT:
|
||||||
|
return tf.estimator.EstimatorSpec(
|
||||||
|
mode=mode,
|
||||||
|
predictions={"ages": predictions})
|
||||||
|
|
||||||
# Calculate loss using mean squared error
|
# Calculate loss using mean squared error
|
||||||
loss = tf.losses.mean_squared_error(labels, predictions)
|
loss = tf.losses.mean_squared_error(labels, predictions)
|
||||||
|
|
||||||
|
optimizer = tf.train.GradientDescentOptimizer(
|
||||||
|
learning_rate=params["learning_rate"])
|
||||||
|
train_op = optimizer.minimize(
|
||||||
|
loss=loss, global_step=tf.train.get_global_step())
|
||||||
|
|
||||||
# Calculate root mean squared error as additional eval metric
|
# Calculate root mean squared error as additional eval metric
|
||||||
eval_metric_ops = {
|
eval_metric_ops = {
|
||||||
"rmse": tf.metrics.root_mean_squared_error(
|
"rmse": tf.metrics.root_mean_squared_error(
|
||||||
tf.cast(labels, tf.float64), predictions)
|
tf.cast(labels, tf.float64), predictions)
|
||||||
}
|
}
|
||||||
|
|
||||||
optimizer = tf.train.GradientDescentOptimizer(
|
# Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
|
||||||
learning_rate=params["learning_rate"])
|
|
||||||
train_op = optimizer.minimize(
|
|
||||||
loss=loss, global_step=tf.train.get_global_step())
|
|
||||||
|
|
||||||
return tf.estimator.EstimatorSpec(
|
return tf.estimator.EstimatorSpec(
|
||||||
mode=mode,
|
mode=mode,
|
||||||
predictions=predictions_dict,
|
|
||||||
loss=loss,
|
loss=loss,
|
||||||
train_op=train_op,
|
train_op=train_op,
|
||||||
eval_metric_ops=eval_metric_ops)
|
eval_metric_ops=eval_metric_ops)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user