Merge pull request #37087 from janosh:patch-1
PiperOrigin-RevId: 312576759 Change-Id: I555c64cd2a8100a7645d0d288521a5971d2faf7b
This commit is contained in:
commit
eb6dddfbb2
@ -562,19 +562,16 @@ def shape_v2(input, out_type=dtypes.int32, name=None):
|
||||
|
||||
See also `tf.size`, `tf.rank`.
|
||||
|
||||
This operation returns a 1-D integer tensor representing the shape of `input`.
|
||||
This represents the minimal set of known information at definition time.
|
||||
`tf.shape` returns a 1-D integer tensor representing the shape of `input`.
|
||||
|
||||
For example:
|
||||
|
||||
>>> t = tf.constant([[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]])
|
||||
>>> tf.shape(t)
|
||||
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([2, 2, 3], dtype=int32)>
|
||||
>>> tf.shape(t).numpy()
|
||||
array([2, 2, 3], dtype=int32)
|
||||
|
||||
Note: When using symbolic tensors, such as when using the Keras functional
|
||||
API, tf.shape() will return the shape of the symbolic tensor.
|
||||
Note: When using symbolic tensors, such as when using the Keras API,
|
||||
tf.shape() will return the shape of the symbolic tensor.
|
||||
|
||||
>>> a = tf.keras.layers.Input((None, 10))
|
||||
>>> tf.shape(a)
|
||||
@ -584,10 +581,13 @@ def shape_v2(input, out_type=dtypes.int32, name=None):
|
||||
|
||||
>>> a.shape
|
||||
TensorShape([None, None, 10])
|
||||
|
||||
(The first `None` represents the as yet unknown batch size.)
|
||||
|
||||
`tf.shape` and `Tensor.shape` should be identical in eager mode. Within
|
||||
`tf.function` or within a `compat.v1` context, not all dimensions may be
|
||||
known until execution time.
|
||||
known until execution time. Hence when defining custom layers and models
|
||||
for graph mode, prefer the dynamic `tf.shape(x)` over the static `x.shape`.
|
||||
|
||||
Args:
|
||||
input: A `Tensor` or `SparseTensor`.
|
||||
|
Loading…
Reference in New Issue
Block a user