Improvements in the base Layer docstring.
PiperOrigin-RevId: 303783601 Change-Id: I434c204c1ab799033366b948f1642580ba267e2d
This commit is contained in:
parent
39b77be0ed
commit
ea70d5bcd3
@ -104,6 +104,38 @@ class Layer(module.Module, version_utils.LayerVersionSelector):
|
|||||||
|
|
||||||
Users will just instantiate a layer and then treat it as a callable.
|
Users will just instantiate a layer and then treat it as a callable.
|
||||||
|
|
||||||
|
Arguments:
|
||||||
|
trainable: Boolean, whether the layer's variables should be trainable.
|
||||||
|
name: String name of the layer.
|
||||||
|
dtype: The dtype of the layer's computations and weights (default of
|
||||||
|
`None` means use `tf.keras.backend.floatx` in TensorFlow 2, or the type
|
||||||
|
of the first input in TensorFlow 1).
|
||||||
|
dynamic: Set this to `True` if your layer should only be run eagerly, and
|
||||||
|
should not be used to generate a static computation graph.
|
||||||
|
This would be the case for a Tree-RNN or a recursive network,
|
||||||
|
for example, or generally for any layer that manipulates tensors
|
||||||
|
using Python control flow. If `False`, we assume that the layer can
|
||||||
|
safely be used to generate a static computation graph.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
name: The name of the layer (string).
|
||||||
|
dtype: The dtype of the layer's computations and weights. If mixed
|
||||||
|
precision is used with a `tf.keras.mixed_precision.experimental.Policy`,
|
||||||
|
this is instead just the dtype of the layer's weights, as the computations
|
||||||
|
are done in a different dtype.
|
||||||
|
losses: List of losses added to this layer (via `self.add_loss()`).
|
||||||
|
metrics: List of metrics added to this layer (via `self.add_metric()`)..
|
||||||
|
trainable_weights: List of variables to be included in backprop.
|
||||||
|
non_trainable_weights: List of variables that should not be
|
||||||
|
included in backprop.
|
||||||
|
weights: The concatenation of the lists trainable_weights and
|
||||||
|
non_trainable_weights (in this order).
|
||||||
|
trainable: Whether the layer should be trained (boolean), i.e. whether
|
||||||
|
its potentially-trainable weights should be returned as part of
|
||||||
|
`layer.trainable_weights`.
|
||||||
|
input_spec: Optional (list of) `InputSpec` object(s) specifying the
|
||||||
|
constraints on inputs that can be accepted by the layer.
|
||||||
|
|
||||||
We recommend that descendants of `Layer` implement the following methods:
|
We recommend that descendants of `Layer` implement the following methods:
|
||||||
|
|
||||||
* `__init__()`: Defines custom layer attributes, and creates layer state
|
* `__init__()`: Defines custom layer attributes, and creates layer state
|
||||||
@ -223,35 +255,7 @@ class Layer(module.Module, version_utils.LayerVersionSelector):
|
|||||||
[Writing custom layers and models with Keras](
|
[Writing custom layers and models with Keras](
|
||||||
https://www.tensorflow.org/guide/keras/custom_layers_and_models)
|
https://www.tensorflow.org/guide/keras/custom_layers_and_models)
|
||||||
|
|
||||||
Arguments:
|
About the layer's `dtype` attribute:
|
||||||
trainable: Boolean, whether the layer's variables should be trainable.
|
|
||||||
name: String name of the layer.
|
|
||||||
dtype: The dtype of the layer's computations and weights (default of
|
|
||||||
`None` means use `tf.keras.backend.floatx` in TensorFlow 2, or the type
|
|
||||||
of the first input in TensorFlow 1).
|
|
||||||
dynamic: Set this to `True` if your layer should only be run eagerly, and
|
|
||||||
should not be used to generate a static computation graph.
|
|
||||||
This would be the case for a Tree-RNN or a recursive network,
|
|
||||||
for example, or generally for any layer that manipulates tensors
|
|
||||||
using Python control flow. If `False`, we assume that the layer can
|
|
||||||
safely be used to generate a static computation graph.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
name: The name of the layer (string).
|
|
||||||
dtype: The dtype of the layer's computations and weights. If mixed
|
|
||||||
precision is used with a `tf.keras.mixed_precision.experimental.Policy`,
|
|
||||||
this is instead just the dtype of the layer's weights, as the computations
|
|
||||||
are done in a different dtype.
|
|
||||||
updates: List of update ops of this layer.
|
|
||||||
losses: List of losses added by this layer.
|
|
||||||
trainable_weights: List of variables to be included in backprop.
|
|
||||||
non_trainable_weights: List of variables that should not be
|
|
||||||
included in backprop.
|
|
||||||
weights: The concatenation of the lists trainable_weights and
|
|
||||||
non_trainable_weights (in this order).
|
|
||||||
trainable: Whether the layer should be trained (boolean).
|
|
||||||
input_spec: Optional (list of) `InputSpec` object(s) specifying the
|
|
||||||
constraints on inputs that can be accepted by the layer.
|
|
||||||
|
|
||||||
Each layer has a dtype, which is typically the dtype of the layer's
|
Each layer has a dtype, which is typically the dtype of the layer's
|
||||||
computations and variables. A layer's dtype can be queried via the
|
computations and variables. A layer's dtype can be queried via the
|
||||||
|
Loading…
Reference in New Issue
Block a user