[tf.data] Remove unused job_token parameter.
This was originally introduced when we explicitly managed data service job tokens in Python. Job tokens are now managed in c++ instead, so this parameter is no longer unused. This CL also calls super(OwnedIterator, self).__init__() to prevent a lint error. PiperOrigin-RevId: 328549745 Change-Id: I1df491f646f39aaf7c6b99e0e7257cd6cd94cc73
This commit is contained in:
parent
40a314cab8
commit
ea51dc00f0
@ -36,7 +36,6 @@ from tensorflow.python.framework import tensor_shape
|
||||
from tensorflow.python.framework import tensor_spec
|
||||
from tensorflow.python.framework import type_spec
|
||||
from tensorflow.python.ops import gen_dataset_ops
|
||||
from tensorflow.python.ops import gen_experimental_dataset_ops
|
||||
from tensorflow.python.training.saver import BaseSaverBuilder
|
||||
from tensorflow.python.training.tracking import base as trackable
|
||||
from tensorflow.python.util import deprecation
|
||||
@ -656,11 +655,7 @@ class OwnedIterator(IteratorBase):
|
||||
in eager mode and inside of tf.functions.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dataset=None,
|
||||
components=None,
|
||||
element_spec=None,
|
||||
job_token=None):
|
||||
def __init__(self, dataset=None, components=None, element_spec=None):
|
||||
"""Creates a new iterator from the given dataset.
|
||||
|
||||
If `dataset` is not specified, the iterator will be created from the given
|
||||
@ -673,20 +668,17 @@ class OwnedIterator(IteratorBase):
|
||||
components: Tensor components to construct the iterator from.
|
||||
element_spec: A nested structure of `TypeSpec` objects that
|
||||
represents the type specification of elements of the iterator.
|
||||
job_token: A token to use for reading from a tf.data service job. Data
|
||||
will be partitioned among all iterators using the same token. If `None`,
|
||||
the iterator will not read from the tf.data service.
|
||||
|
||||
Raises:
|
||||
ValueError: If `dataset` is not provided and either `components` or
|
||||
`element_spec` is not provided. Or `dataset` is provided and either
|
||||
`components` and `element_spec` is provided.
|
||||
"""
|
||||
super(OwnedIterator, self).__init__()
|
||||
error_message = ("Either `dataset` or both `components` and "
|
||||
"`element_spec` need to be provided.")
|
||||
|
||||
self._device = context.context().device_name
|
||||
self._job_token = job_token
|
||||
|
||||
if dataset is None:
|
||||
if (components is None or element_spec is None):
|
||||
@ -729,11 +721,7 @@ class OwnedIterator(IteratorBase):
|
||||
gen_dataset_ops.anonymous_iterator_v2(
|
||||
output_types=self._flat_output_types,
|
||||
output_shapes=self._flat_output_shapes))
|
||||
if self._job_token is None:
|
||||
gen_dataset_ops.make_iterator(ds_variant, self._iterator_resource)
|
||||
else:
|
||||
gen_experimental_dataset_ops.make_data_service_iterator(
|
||||
ds_variant, self._job_token, self._iterator_resource)
|
||||
gen_dataset_ops.make_iterator(ds_variant, self._iterator_resource)
|
||||
# Delete the resource when this object is deleted
|
||||
self._resource_deleter = IteratorResourceDeleter(
|
||||
handle=self._iterator_resource,
|
||||
|
Loading…
x
Reference in New Issue
Block a user