diff --git a/tensorflow/go/op/wrappers.go b/tensorflow/go/op/wrappers.go index eff67194671..d4af263fc65 100644 --- a/tensorflow/go/op/wrappers.go +++ b/tensorflow/go/op/wrappers.go @@ -688,14 +688,14 @@ func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides // // For example, given this input of shape `[1, 1, 1, 4]`, and a block size of 2: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3, 4]]]] // // ``` // // This operation will output a tensor of shape `[1, 2, 2, 1]`: // -// ```prettyprint +// ``` // [[[[1], [2]], // [[3], [4]]]] // ``` @@ -707,14 +707,14 @@ func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides // // For an input tensor with larger depth, here of shape `[1, 1, 1, 12]`, e.g. // -// ```prettyprint +// ``` // x = [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]] // ``` // // This operation, for block size of 2, will return the following tensor of shape // `[1, 2, 2, 3]` // -// ```prettyprint +// ``` // [[[[1, 2, 3], [4, 5, 6]], // [[7, 8, 9], [10, 11, 12]]]] // @@ -722,7 +722,7 @@ func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides // // Similarly, for the following input of shape `[1 2 2 4]`, and a block size of 2: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3, 4], // [5, 6, 7, 8]], // [[9, 10, 11, 12], @@ -731,7 +731,7 @@ func ExtractImagePatches(scope *Scope, images tf.Output, ksizes []int64, strides // // the operator will return the following tensor of shape `[1 4 4 1]`: // -// ```prettyprint +// ``` // x = [[ [1], [2], [5], [6]], // [ [3], [4], [7], [8]], // [ [9], [10], [13], [14]], @@ -819,26 +819,26 @@ func DepthToSpace(scope *Scope, input tf.Output, block_size int64) (output tf.Ou // (1) For the following input of shape `[4, 1, 1, 1]`, `block_shape = [2, 2]`, and // `crops = [[0, 0], [0, 0]]`: // -// ```prettyprint +// ``` // [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] // ``` // // The output tensor has shape `[1, 2, 2, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [2]], [[3], [4]]]] // ``` // // (2) For the following input of shape `[4, 1, 1, 3]`, `block_shape = [2, 2]`, and // `crops = [[0, 0], [0, 0]]`: // -// ```prettyprint +// ``` // [[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] // ``` // // The output tensor has shape `[1, 2, 2, 3]` and value: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3], [4, 5, 6]], // [[7, 8, 9], [10, 11, 12]]]] // ``` @@ -846,7 +846,7 @@ func DepthToSpace(scope *Scope, input tf.Output, block_size int64) (output tf.Ou // (3) For the following input of shape `[4, 2, 2, 1]`, `block_shape = [2, 2]`, and // `crops = [[0, 0], [0, 0]]`: // -// ```prettyprint +// ``` // x = [[[[1], [3]], [[9], [11]]], // [[[2], [4]], [[10], [12]]], // [[[5], [7]], [[13], [15]]], @@ -855,7 +855,7 @@ func DepthToSpace(scope *Scope, input tf.Output, block_size int64) (output tf.Ou // // The output tensor has shape `[1, 4, 4, 1]` and value: // -// ```prettyprint +// ``` // x = [[[1], [2], [3], [4]], // [[5], [6], [7], [8]], // [[9], [10], [11], [12]], @@ -865,7 +865,7 @@ func DepthToSpace(scope *Scope, input tf.Output, block_size int64) (output tf.Ou // (4) For the following input of shape `[8, 1, 3, 1]`, `block_shape = [2, 2]`, and // `crops = [[0, 0], [2, 0]]`: // -// ```prettyprint +// ``` // x = [[[[0], [1], [3]]], [[[0], [9], [11]]], // [[[0], [2], [4]]], [[[0], [10], [12]]], // [[[0], [5], [7]]], [[[0], [13], [15]]], @@ -874,7 +874,7 @@ func DepthToSpace(scope *Scope, input tf.Output, block_size int64) (output tf.Ou // // The output tensor has shape `[2, 2, 4, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [2], [3], [4]], // [[5], [6], [7], [8]]], // [[[9], [10], [11], [12]], @@ -932,32 +932,32 @@ func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops // // (1) For the following input of shape `[1, 2, 2, 1]` and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [2]], [[3], [4]]]] // ``` // // The output tensor has shape `[4, 1, 1, 1]` and value: // -// ```prettyprint +// ``` // [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] // ``` // // (2) For the following input of shape `[1, 2, 2, 3]` and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3], [4, 5, 6]], // [[7, 8, 9], [10, 11, 12]]]] // ``` // // The output tensor has shape `[4, 1, 1, 3]` and value: // -// ```prettyprint +// ``` // [[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] // ``` // // (3) For the following input of shape `[1, 4, 4, 1]` and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [2], [3], [4]], // [[5], [6], [7], [8]], // [[9], [10], [11], [12]], @@ -966,7 +966,7 @@ func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops // // The output tensor has shape `[4, 2, 2, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [3]], [[9], [11]]], // [[[2], [4]], [[10], [12]]], // [[[5], [7]], [[13], [15]]], @@ -975,7 +975,7 @@ func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops // // (4) For the following input of shape `[2, 2, 4, 1]` and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [2], [3], [4]], // [[5], [6], [7], [8]]], // [[[9], [10], [11], [12]], @@ -984,7 +984,7 @@ func BatchToSpaceND(scope *Scope, input tf.Output, block_shape tf.Output, crops // // The output tensor has shape `[8, 1, 2, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], // [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]] // ``` @@ -1177,34 +1177,34 @@ func QuantizeAndDequantizeV2(scope *Scope, input tf.Output, input_min tf.Output, // (1) For the following input of shape `[1, 2, 2, 1]`, `block_shape = [2, 2]`, and // `paddings = [[0, 0], [0, 0]]`: // -// ```prettyprint +// ``` // x = [[[[1], [2]], [[3], [4]]]] // ``` // // The output tensor has shape `[4, 1, 1, 1]` and value: // -// ```prettyprint +// ``` // [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] // ``` // // (2) For the following input of shape `[1, 2, 2, 3]`, `block_shape = [2, 2]`, and // `paddings = [[0, 0], [0, 0]]`: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3], [4, 5, 6]], // [[7, 8, 9], [10, 11, 12]]]] // ``` // // The output tensor has shape `[4, 1, 1, 3]` and value: // -// ```prettyprint +// ``` // [[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] // ``` // // (3) For the following input of shape `[1, 4, 4, 1]`, `block_shape = [2, 2]`, and // `paddings = [[0, 0], [0, 0]]`: // -// ```prettyprint +// ``` // x = [[[[1], [2], [3], [4]], // [[5], [6], [7], [8]], // [[9], [10], [11], [12]], @@ -1213,7 +1213,7 @@ func QuantizeAndDequantizeV2(scope *Scope, input tf.Output, input_min tf.Output, // // The output tensor has shape `[4, 2, 2, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [3]], [[9], [11]]], // [[[2], [4]], [[10], [12]]], // [[[5], [7]], [[13], [15]]], @@ -1223,7 +1223,7 @@ func QuantizeAndDequantizeV2(scope *Scope, input tf.Output, input_min tf.Output, // (4) For the following input of shape `[2, 2, 4, 1]`, block_shape = `[2, 2]`, and // paddings = `[[0, 0], [2, 0]]`: // -// ```prettyprint +// ``` // x = [[[[1], [2], [3], [4]], // [[5], [6], [7], [8]]], // [[[9], [10], [11], [12]], @@ -1232,7 +1232,7 @@ func QuantizeAndDequantizeV2(scope *Scope, input tf.Output, input_min tf.Output, // // The output tensor has shape `[8, 1, 3, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[0], [1], [3]]], [[[0], [9], [11]]], // [[[0], [2], [4]]], [[[0], [10], [12]]], // [[[0], [5], [7]]], [[[0], [13], [15]]], @@ -1278,14 +1278,14 @@ func ListDiffOutIdx(value tf.DataType) ListDiffAttr { // // For example, given this input: // -// ```prettyprint +// ``` // x = [1, 2, 3, 4, 5, 6] // y = [1, 3, 5] // ``` // // This operation would return: // -// ```prettyprint +// ``` // out ==> [2, 4, 6] // idx ==> [1, 3, 5] // ``` @@ -1339,14 +1339,14 @@ func SqueezeSqueezeDims(value []int64) SqueezeAttr { // // For example: // -// ```prettyprint +// ``` // # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] // shape(squeeze(t)) ==> [2, 3] // ``` // // Or, to remove specific size 1 dimensions: // -// ```prettyprint +// ``` // # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] // shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] // ``` @@ -1461,7 +1461,7 @@ func Placeholder(scope *Scope, dtype tf.DataType, optional ...PlaceholderAttr) ( // // For example: // -// ```prettyprint +// ``` // # 't' is [[1, 2, 3], [4, 5, 6]]. // # 'paddings' is [[1, 1]], [2, 2]]. // # 'mode' is SYMMETRIC. @@ -1545,7 +1545,7 @@ func BroadcastArgs(scope *Scope, s0 tf.Output, s1 tf.Output) (r0 tf.Output) { // // For example: // -// ```prettyprint +// ``` // # 'input' tensor is [[True, False] // # [True, False]] // # 'input' has two true values, so output has two coordinates. @@ -1762,7 +1762,7 @@ func ShapeN(scope *Scope, input []tf.Output, optional ...ShapeNAttr) (output []t // // For example: // -// ```prettyprint +// ``` // # tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9] // # tensor 't' has shape [9] // reshape(t, [3, 3]) ==> [[1, 2, 3], @@ -2187,7 +2187,7 @@ func MatrixSetDiag(scope *Scope, input tf.Output, diagonal tf.Output) (output tf // // For example: // -// ```prettyprint +// ``` // # 'input' is [[1, 0, 0, 0] // [0, 2, 0, 0] // [0, 0, 3, 0] @@ -2383,7 +2383,7 @@ func Split(scope *Scope, split_dim tf.Output, value tf.Output, num_split int64) // // For example: // -// ```prettyprint +// ``` // # 'x' is [2, 2, 7] // # 'y' is [2, 3, 7] // # 'z' is [2, 5, 7] @@ -2452,7 +2452,7 @@ func Concat(scope *Scope, concat_dim tf.Output, values []tf.Output) (output tf.O // // For example: // -// ```prettyprint +// ``` // # 'x' is [[1, 4]] // # 'y' is [[2, 5]] // # 'z' is [[3, 6]] @@ -2587,7 +2587,7 @@ func UniqueOutIdx(value tf.DataType) UniqueAttr { // // For example: // -// ```prettyprint +// ``` // # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] // y, idx = unique(x) // y ==> [1, 2, 4, 7, 8] @@ -3067,14 +3067,14 @@ func ControlTrigger(scope *Scope) (o *tf.Operation) { // // For example, given this input of shape `[1, 2, 2, 1]`, and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [2]], // [[3], [4]]]] // ``` // // This operation will output a tensor of shape `[1, 1, 1, 4]`: // -// ```prettyprint +// ``` // [[[[1, 2, 3, 4]]]] // ``` // @@ -3085,7 +3085,7 @@ func ControlTrigger(scope *Scope) (o *tf.Operation) { // // For an input tensor with larger depth, here of shape `[1, 2, 2, 3]`, e.g. // -// ```prettyprint +// ``` // x = [[[[1, 2, 3], [4, 5, 6]], // [[7, 8, 9], [10, 11, 12]]]] // ``` @@ -3093,13 +3093,13 @@ func ControlTrigger(scope *Scope) (o *tf.Operation) { // This operation, for block_size of 2, will return the following tensor of shape // `[1, 1, 1, 12]` // -// ```prettyprint +// ``` // [[[[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]]]] // ``` // // Similarly, for the following input of shape `[1 4 4 1]`, and a block size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [2], [5], [6]], // [[3], [4], [7], [8]], // [[9], [10], [13], [14]], @@ -3108,7 +3108,7 @@ func ControlTrigger(scope *Scope) (o *tf.Operation) { // // the operator will return the following tensor of shape `[1 2 2 4]`: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3, 4], // [5, 6, 7, 8]], // [[9, 10, 11, 12], @@ -3852,7 +3852,7 @@ func TensorArraySplitV3(scope *Scope, handle tf.Output, value tf.Output, lengths // // For example: // -// ```prettyprint +// ``` // # 'diagonal' is [1, 2, 3, 4] // tf.diag(diagonal) ==> [[1, 0, 0, 0] // [0, 2, 0, 0] @@ -4087,7 +4087,7 @@ func TensorArrayConcatV2(scope *Scope, handle tf.Output, flow_in tf.Output, dtyp // // For example: // -// ```prettyprint +// ``` // # 'input' is [[[1, 0, 0, 0] // [0, 2, 0, 0] // [0, 0, 3, 0] @@ -4788,7 +4788,7 @@ func StridedSliceShrinkAxisMask(value int64) StridedSliceAttr { // particular, // `foo[1, 2:4, None, ..., :-3:-1, :]` will be encoded as // -// ```prettyprint +// ``` // begin = [1, 2, x, x, 0, x] # x denotes don't care (usually 0) // end = [2, 4, x, x, -3, x] // strides = [1, 1, x, x, -1, 1] @@ -6014,7 +6014,7 @@ func ReverseSequenceBatchDim(value int64) ReverseSequenceAttr { // // For example: // -// ```prettyprint +// ``` // # Given this: // batch_dim = 0 // seq_dim = 1 @@ -6036,7 +6036,7 @@ func ReverseSequenceBatchDim(value int64) ReverseSequenceAttr { // // In contrast, if: // -// ```prettyprint +// ``` // # Given this: // batch_dim = 2 // seq_dim = 0 @@ -6916,7 +6916,7 @@ func SaveSlices(scope *Scope, filename tf.Output, tensor_names tf.Output, shapes // // For example: // -// ```prettyprint +// ``` // # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] // # shape of tensor 't' is [2, 2, 3] // rank(t) ==> 3 @@ -7126,7 +7126,7 @@ func Acos(scope *Scope, x tf.Output) (y tf.Output) { // // For example: // -// ```prettyprint +// ``` // # if 'input' is [[ 0, 1, 2, 3] // [-1, 0, 1, 2] // [-2, -1, 0, 1] @@ -7145,7 +7145,7 @@ func Acos(scope *Scope, x tf.Output) (y tf.Output) { // // Useful special cases: // -// ```prettyprint +// ``` // tf.matrix_band_part(input, 0, -1) ==> Upper triangular part. // tf.matrix_band_part(input, -1, 0) ==> Lower triangular part. // tf.matrix_band_part(input, 0, 0) ==> Diagonal. @@ -9933,7 +9933,7 @@ func PackAxis(value int64) PackAttr { // // For example: // -// ```prettyprint +// ``` // # 'x' is [1, 4] // # 'y' is [2, 5] // # 'z' is [3, 6] @@ -10166,7 +10166,7 @@ func WriteFile(scope *Scope, filename tf.Output, contents tf.Output) (o *tf.Oper // // For example: // -// ```prettyprint +// ``` // # tensor 't' is [[[[ 0, 1, 2, 3], // # [ 4, 5, 6, 7], // # [ 8, 9, 10, 11]], @@ -10638,7 +10638,7 @@ func SizeOutType(value tf.DataType) SizeAttr { // // For example: // -// ```prettyprint +// ``` // # 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]] // size(t) ==> 12 // ``` @@ -10820,7 +10820,7 @@ func FFT2D(scope *Scope, input tf.Output) (output tf.Output) { // // For example: // -// ```prettyprint +// ``` // # Output tensor has shape [2, 3]. // fill([2, 3], 9) ==> [[9, 9, 9] // [9, 9, 9]] @@ -11617,7 +11617,7 @@ func SparseAdd(scope *Scope, a_indices tf.Output, a_values tf.Output, a_shape tf // // For example: // -// ```prettyprint +// ``` // # 't' is [[1, 2, 3], [4, 5, 6], [7, 8, 9]]. // # 'paddings' is [[0, 1]], [0, 1]]. // # 'mode' is SYMMETRIC. @@ -11662,7 +11662,7 @@ func MirrorPadGrad(scope *Scope, input tf.Output, paddings tf.Output, mode strin // // For example: // -// ```prettyprint +// ``` // # tensor `x` is [3, 4, 0, 2, 1] // invert_permutation(x) ==> [2, 4, 3, 0, 1] // ``` @@ -11698,7 +11698,7 @@ func InvertPermutation(scope *Scope, x tf.Output) (y tf.Output) { // // For example: // -// ```prettyprint +// ``` // # tensor 't' is [[[[ 0, 1, 2, 3], // # [ 4, 5, 6, 7], // # [ 8, 9, 10, 11]], @@ -13533,7 +13533,7 @@ func LogicalNot(scope *Scope, x tf.Output) (y tf.Output) { // // For example: // -// ```prettyprint +// ``` // # 't' is [[1, 1], [2, 2]] // # 'paddings' is [[1, 1], [2, 2]] // # rank of 't' is 2 @@ -15420,7 +15420,7 @@ func UniqueWithCountsOutIdx(value tf.DataType) UniqueWithCountsAttr { // // For example: // -// ```prettyprint +// ``` // # tensor 'x' is [1, 1, 2, 4, 4, 4, 7, 8, 8] // y, idx, count = unique_with_counts(x) // y ==> [1, 2, 4, 7, 8] @@ -15728,7 +15728,7 @@ func NotEqual(scope *Scope, x tf.Output, y tf.Output) (z tf.Output) { // // For example: // -// ```prettyprint +// ``` // # 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]] // // and diagonal.shape = (2, 4) @@ -16704,7 +16704,7 @@ func Sqrt(scope *Scope, x tf.Output) (y tf.Output) { // // Other examples: // -// ```prettyprint +// ``` // # 't' is a tensor of shape [2] // shape(expand_dims(t, 0)) ==> [1, 2] // shape(expand_dims(t, 1)) ==> [2, 1] @@ -17478,32 +17478,32 @@ func Tan(scope *Scope, x tf.Output) (y tf.Output) { // // (1) For the following input of shape `[4, 1, 1, 1]` and block_size of 2: // -// ```prettyprint +// ``` // [[[[1]]], [[[2]]], [[[3]]], [[[4]]]] // ``` // // The output tensor has shape `[1, 2, 2, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [2]], [[3], [4]]]] // ``` // // (2) For the following input of shape `[4, 1, 1, 3]` and block_size of 2: // -// ```prettyprint +// ``` // [[[1, 2, 3]], [[4, 5, 6]], [[7, 8, 9]], [[10, 11, 12]]] // ``` // // The output tensor has shape `[1, 2, 2, 3]` and value: // -// ```prettyprint +// ``` // x = [[[[1, 2, 3], [4, 5, 6]], // [[7, 8, 9], [10, 11, 12]]]] // ``` // // (3) For the following input of shape `[4, 2, 2, 1]` and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [3]], [[9], [11]]], // [[[2], [4]], [[10], [12]]], // [[[5], [7]], [[13], [15]]], @@ -17512,7 +17512,7 @@ func Tan(scope *Scope, x tf.Output) (y tf.Output) { // // The output tensor has shape `[1, 4, 4, 1]` and value: // -// ```prettyprint +// ``` // x = [[[1], [2], [3], [4]], // [[5], [6], [7], [8]], // [[9], [10], [11], [12]], @@ -17521,14 +17521,14 @@ func Tan(scope *Scope, x tf.Output) (y tf.Output) { // // (4) For the following input of shape `[8, 1, 2, 1]` and block_size of 2: // -// ```prettyprint +// ``` // x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]], // [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]] // ``` // // The output tensor has shape `[2, 2, 4, 1]` and value: // -// ```prettyprint +// ``` // x = [[[[1], [3]], [[5], [7]]], // [[[2], [4]], [[10], [12]]], // [[[5], [7]], [[13], [15]]], @@ -20468,7 +20468,7 @@ func ShapeOutType(value tf.DataType) ShapeAttr { // // For example: // -// ```prettyprint +// ``` // # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] // shape(t) ==> [2, 2, 3] // ```