Go: Update generated wrapper functions for TensorFlow ops.
PiperOrigin-RevId: 297909837 Change-Id: Ic30a2b2c725f6815818ce0f61748f0dd8f6c38ac
This commit is contained in:
parent
8443eb5ce4
commit
e7e48f5a85
|
@ -3580,7 +3580,7 @@ func BoostedTreesSparseCalculateBestFeatureSplitSplitType(value string) BoostedT
|
|||
// l1: l1 regularization factor on leaf weights, per instance based.
|
||||
// l2: l2 regularization factor on leaf weights, per instance based.
|
||||
// tree_complexity: adjustment to the gain, per leaf based.
|
||||
// min_node_weight: mininum avg of hessians in a node before required for the node to be considered for splitting.
|
||||
// min_node_weight: minimum avg of hessians in a node before required for the node to be considered for splitting.
|
||||
// logits_dimension: The dimension of logit, i.e., number of classes.
|
||||
//
|
||||
// Returns:
|
||||
|
@ -3677,7 +3677,7 @@ func BoostedTreesCalculateBestFeatureSplitV2(scope *Scope, node_id_range tf.Outp
|
|||
// l1: l1 regularization factor on leaf weights, per instance based.
|
||||
// l2: l2 regularization factor on leaf weights, per instance based.
|
||||
// tree_complexity: adjustment to the gain, per leaf based.
|
||||
// min_node_weight: mininum avg of hessians in a node before required for the node to be considered for splitting.
|
||||
// min_node_weight: minimum avg of hessians in a node before required for the node to be considered for splitting.
|
||||
// max_splits: the number of nodes that can be split in the whole tree. Used as a dimension of output tensors.
|
||||
//
|
||||
// Returns:
|
||||
|
@ -3730,7 +3730,7 @@ func BoostedTreesCalculateBestGainsPerFeature(scope *Scope, node_id_range tf.Out
|
|||
// Checks whether a tree ensemble has been initialized.
|
||||
//
|
||||
// Arguments:
|
||||
// tree_ensemble_handle: Handle to the tree ensemble resouce.
|
||||
// tree_ensemble_handle: Handle to the tree ensemble resource.
|
||||
//
|
||||
// Returns output boolean on whether it is initialized or not.
|
||||
func IsBoostedTreesEnsembleInitialized(scope *Scope, tree_ensemble_handle tf.Output) (is_initialized tf.Output) {
|
||||
|
@ -5126,7 +5126,7 @@ func CudnnRNNParamsToCanonicalV2NumProj(value int64) CudnnRNNParamsToCanonicalV2
|
|||
// num_layers: Specifies the number of layers in the RNN model.
|
||||
// num_units: Specifies the size of the hidden state.
|
||||
// input_size: Specifies the size of the input state.
|
||||
// num_params_weigths: number of weight parameter matrix for all layers.
|
||||
// num_params_weights: number of weight parameter matrix for all layers.
|
||||
// num_params_biases: number of bias parameter vector for all layers.
|
||||
// weights: the canonical form of weights that can be used for saving
|
||||
// and restoration. They are more likely to be compatible across different
|
||||
|
@ -8344,7 +8344,7 @@ func BoostedTreesCalculateBestFeatureSplitSplitType(value string) BoostedTreesCa
|
|||
// l1: l1 regularization factor on leaf weights, per instance based.
|
||||
// l2: l2 regularization factor on leaf weights, per instance based.
|
||||
// tree_complexity: adjustment to the gain, per leaf based.
|
||||
// min_node_weight: mininum avg of hessians in a node before required for the node to be considered for splitting.
|
||||
// min_node_weight: minimum avg of hessians in a node before required for the node to be considered for splitting.
|
||||
// logits_dimension: The dimension of logit, i.e., number of classes.
|
||||
//
|
||||
// Returns:
|
||||
|
@ -13731,7 +13731,7 @@ func DebugNumericSummaryV2OutputDtype(value tf.DataType) DebugNumericSummaryV2At
|
|||
// element is a bit which is set to 1 if the input tensor has an
|
||||
// infinity or nan value, or zero otherwise.
|
||||
//
|
||||
// 3 (CONCISE_HEALTH): Ouput a float32/64 tensor of shape [5]. The 1st
|
||||
// 3 (CONCISE_HEALTH): Output a float32/64 tensor of shape [5]. The 1st
|
||||
// element is the tensor_id, if provided, and -1 otherwise. The
|
||||
// remaining four slots are the total number of elements, -infs,
|
||||
// +infs, and nans in the input tensor respectively.
|
||||
|
@ -14089,11 +14089,11 @@ func TridiagonalSolve(scope *Scope, diagonals tf.Output, rhs tf.Output, optional
|
|||
//
|
||||
// Arguments:
|
||||
// superdiag: Tensor of shape `[..., 1, M]`, representing superdiagonals of
|
||||
// tri-diagonal matrices to the left of multiplication. Last element is ingored.
|
||||
// tri-diagonal matrices to the left of multiplication. Last element is ignored.
|
||||
// maindiag: Tensor of shape `[..., 1, M]`, representing main diagonals of tri-diagonal
|
||||
// matrices to the left of multiplication.
|
||||
// subdiag: Tensor of shape `[..., 1, M]`, representing subdiagonals of tri-diagonal
|
||||
// matrices to the left of multiplication. First element is ingored.
|
||||
// matrices to the left of multiplication. First element is ignored.
|
||||
// rhs: Tensor of shape `[..., M, N]`, representing MxN matrices to the right of
|
||||
// multiplication.
|
||||
//
|
||||
|
@ -17710,7 +17710,7 @@ func CudnnRNNCanonicalToParamsV2NumProj(value int64) CudnnRNNCanonicalToParamsV2
|
|||
// biases: the canonical form of biases that can be used for saving
|
||||
// and restoration. They are more likely to be compatible across different
|
||||
// generations.
|
||||
// num_params_weigths: number of weight parameter matrix for all layers.
|
||||
// num_params_weights: number of weight parameter matrix for all layers.
|
||||
// num_params_biases: number of bias parameter vector for all layers.
|
||||
// rnn_mode: Indicates the type of the RNN model.
|
||||
// input_mode: Indicate whether there is a linear projection between the input and
|
||||
|
@ -31238,8 +31238,8 @@ func ResourceApplyFtrlV2UseLocking(value bool) ResourceApplyFtrlV2Attr {
|
|||
// linear: Should be from a Variable().
|
||||
// grad: The gradient.
|
||||
// lr: Scaling factor. Must be a scalar.
|
||||
// l1: L1 regulariation. Must be a scalar.
|
||||
// l2: L2 shrinkage regulariation. Must be a scalar.
|
||||
// l1: L1 regularization. Must be a scalar.
|
||||
// l2: L2 shrinkage regularization. Must be a scalar.
|
||||
//
|
||||
// lr_power: Scaling factor. Must be a scalar.
|
||||
//
|
||||
|
@ -36706,8 +36706,8 @@ func ResourceApplyFtrlUseLocking(value bool) ResourceApplyFtrlAttr {
|
|||
// linear: Should be from a Variable().
|
||||
// grad: The gradient.
|
||||
// lr: Scaling factor. Must be a scalar.
|
||||
// l1: L1 regulariation. Must be a scalar.
|
||||
// l2: L2 regulariation. Must be a scalar.
|
||||
// l1: L1 regularization. Must be a scalar.
|
||||
// l2: L2 regularization. Must be a scalar.
|
||||
// lr_power: Scaling factor. Must be a scalar.
|
||||
//
|
||||
// Returns the created operation.
|
||||
|
@ -43228,7 +43228,7 @@ func ResourceSparseApplyFtrlV2UseLocking(value bool) ResourceSparseApplyFtrlV2At
|
|||
// indices: A vector of indices into the first dimension of var and accum.
|
||||
// lr: Scaling factor. Must be a scalar.
|
||||
// l1: L1 regularization. Must be a scalar.
|
||||
// l2: L2 shrinkage regulariation. Must be a scalar.
|
||||
// l2: L2 shrinkage regularization. Must be a scalar.
|
||||
//
|
||||
// lr_power: Scaling factor. Must be a scalar.
|
||||
//
|
||||
|
|
Loading…
Reference in New Issue