Fix for Keras logging

PiperOrigin-RevId: 221099213
This commit is contained in:
A. Unique TensorFlower 2018-11-12 08:51:32 -08:00 committed by TensorFlower Gardener
parent fc44600e5c
commit e7d988404a
2 changed files with 17 additions and 0 deletions

View File

@ -274,6 +274,7 @@ def model_iteration(model,
# TODO(omalleyt): Handle ProgBar as part of Callbacks once hooks are ready.
progbar = _get_progbar(model, count_mode)
progbar.params = callbacks.params
progbar.params['verbose'] = verbose
# Find beforehand arrays that need sparse-to-dense conversion.
if issparse is not None:

View File

@ -18,9 +18,12 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import io
import logging
import sys
import numpy as np
import six
from tensorflow.python import keras
from tensorflow.python.data.ops import dataset_ops
@ -2222,6 +2225,19 @@ class TestTrainingWithMetrics(test.TestCase):
scores = model.train_on_batch(x, y, sample_weight=w)
self.assertArrayNear(scores, [0.2, 0.8], 0.1)
@tf_test_util.run_in_graph_and_eager_modes
def test_logging(self):
mock_stdout = io.BytesIO() if six.PY2 else io.StringIO()
model = keras.models.Sequential()
model.add(keras.layers.Dense(10, activation='relu'))
model.add(keras.layers.Dense(1, activation='sigmoid'))
model.compile(
RMSPropOptimizer(learning_rate=0.001), loss='binary_crossentropy')
with test.mock.patch.object(sys, 'stdout', mock_stdout):
model.fit(
np.ones((10, 10), 'float32'), np.ones((10, 1), 'float32'), epochs=10)
self.assertTrue('Epoch 5/10' in mock_stdout.getvalue())
def test_losses_in_defun(self):
with context.eager_mode():
layer = keras.layers.Dense(1, kernel_regularizer='l1')