INT16 reference_op for TRANSPOSE_CONVOLUTION
add INT16 reference ops transpose_conv add TEST code for INT16 transpose_conv
This commit is contained in:
parent
d5d92b241b
commit
e71f56e928
@ -83,6 +83,8 @@ using int16 = std::int16_t;
|
||||
using uint16 = std::uint16_t;
|
||||
using int32 = std::int32_t;
|
||||
using uint32 = std::uint32_t;
|
||||
using int64 = std::int64_t;
|
||||
using uint64 = std::uint64_t;
|
||||
|
||||
// TFLITE_DEPRECATED()
|
||||
//
|
||||
|
@ -112,6 +112,98 @@ inline void TransposeConv(
|
||||
}
|
||||
}
|
||||
|
||||
// int16 input, int8 filter, int64 accumulator
|
||||
inline void TransposeConv(
|
||||
const ConvParams& params, const int32* output_multiplier,
|
||||
const int32* output_shift, const RuntimeShape& input_shape,
|
||||
const int16* input_data, const RuntimeShape& filter_shape,
|
||||
const int8* filter_data, const RuntimeShape& output_shape,
|
||||
int16* output_data, const RuntimeShape& im2col_shape, int8* im2col_data,
|
||||
int64* scratch_buffer) {
|
||||
const int stride_width = params.stride_width;
|
||||
const int stride_height = params.stride_height;
|
||||
const int pad_width = params.padding_values.width;
|
||||
const int pad_height = params.padding_values.height;
|
||||
TFLITE_DCHECK_EQ(input_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_EQ(filter_shape.DimensionsCount(), 4);
|
||||
TFLITE_DCHECK_EQ(output_shape.DimensionsCount(), 4);
|
||||
(void)im2col_data; // only used in optimized code.
|
||||
(void)im2col_shape; // only used in optimized code.
|
||||
|
||||
const int batches = MatchingDim(input_shape, 0, output_shape, 0);
|
||||
const int input_depth = MatchingDim(input_shape, 3, filter_shape, 3);
|
||||
const int output_depth = MatchingDim(filter_shape, 0, output_shape, 3);
|
||||
const int input_height = input_shape.Dims(1);
|
||||
const int input_width = input_shape.Dims(2);
|
||||
const int filter_height = filter_shape.Dims(1);
|
||||
const int filter_width = filter_shape.Dims(2);
|
||||
const int output_height = output_shape.Dims(1);
|
||||
const int output_width = output_shape.Dims(2);
|
||||
const int32 input_offset = params.input_offset;
|
||||
const int32 output_offset = params.output_offset;
|
||||
const int32 output_activation_min = std::numeric_limits<int16_t>::min();
|
||||
const int32 output_activation_max = std::numeric_limits<int16_t>::max();
|
||||
TFLITE_DCHECK_LE(output_activation_min, output_activation_max);
|
||||
|
||||
const int num_elements = output_shape.FlatSize();
|
||||
// We need to initialize scratch_buffer to all 0s, as we apply the same
|
||||
// 'scatter' based trick as in float version.
|
||||
memset(scratch_buffer, 0, num_elements * sizeof(int64));
|
||||
|
||||
// Loop through input elements one at a time.
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
for (int in_y = 0; in_y < input_height; ++in_y) {
|
||||
for (int in_x = 0; in_x < input_width; ++in_x) {
|
||||
for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
|
||||
// Loop through the output elements it will influence.
|
||||
const int out_x_origin = (in_x * stride_width) - pad_width;
|
||||
const int out_y_origin = (in_y * stride_height) - pad_height;
|
||||
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
|
||||
for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
|
||||
for (int out_channel = 0; out_channel < output_depth;
|
||||
++out_channel) {
|
||||
// Compute output element location.
|
||||
const int out_x = out_x_origin + filter_x;
|
||||
const int out_y = out_y_origin + filter_y;
|
||||
// We cannot accumulate out of bounds.
|
||||
if ((out_x >= 0) && (out_x < output_width) && (out_y >= 0) &&
|
||||
(out_y < output_height)) {
|
||||
const int32 input_value = input_data[Offset(
|
||||
input_shape, batch, in_y, in_x, in_channel)];
|
||||
const int32 filter_value =
|
||||
filter_data[Offset(filter_shape, out_channel, filter_y,
|
||||
filter_x, in_channel)];
|
||||
scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
out_channel)] +=
|
||||
(input_value + input_offset) * filter_value;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int batch = 0; batch < batches; ++batch) {
|
||||
for (int out_y = 0; out_y < output_height; ++out_y) {
|
||||
for (int out_x = 0; out_x < output_width; ++out_x) {
|
||||
for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
|
||||
int64 acc = scratch_buffer[Offset(output_shape, batch, out_y, out_x,
|
||||
out_channel)];
|
||||
int32 scaled_acc = MultiplyByQuantizedMultiplier(
|
||||
acc, output_multiplier[out_channel], output_shift[out_channel]);
|
||||
scaled_acc += output_offset;
|
||||
scaled_acc = std::max(scaled_acc, output_activation_min);
|
||||
scaled_acc = std::min(scaled_acc, output_activation_max);
|
||||
output_data[Offset(output_shape, batch, out_y, out_x, out_channel)] =
|
||||
static_cast<int16_t>(scaled_acc);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace reference_integer_ops
|
||||
} // namespace tflite
|
||||
|
||||
|
@ -46,8 +46,9 @@ TfLiteStatus PopulateConvolutionQuantizationParams(
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
const bool is_per_channel = affine_quantization->scale->size > 1;
|
||||
if (is_per_channel) {
|
||||
// Currently only Int8 is supported for per channel quantization.
|
||||
TF_LITE_ENSURE_EQ(context, input->type, kTfLiteInt8);
|
||||
// Currently only Int8/Int16 is supported for per channel quantization.
|
||||
TF_LITE_ENSURE(context,
|
||||
input->type == kTfLiteInt8 || input->type == kTfLiteInt16);
|
||||
TF_LITE_ENSURE_EQ(context, filter->type, kTfLiteInt8);
|
||||
TF_LITE_ENSURE_EQ(
|
||||
context, affine_quantization->scale->size,
|
||||
|
@ -154,8 +154,9 @@ static TfLiteStatus AllocateTemporaryTensorsIfRequired(TfLiteContext* context,
|
||||
++temporaries_count;
|
||||
}
|
||||
|
||||
// Allocate scratch buffer tensor for UInt8 inputs.
|
||||
if (input_type == kTfLiteUInt8 || input_type == kTfLiteInt8) {
|
||||
// Allocate scratch buffer tensor
|
||||
if (input_type == kTfLiteUInt8 || input_type == kTfLiteInt8 ||
|
||||
input_type == kTfLiteInt16) {
|
||||
if (data->scratch_tensor_id == kTensorNotAllocated) {
|
||||
context->AddTensors(context, 1, &data->scratch_tensor_id);
|
||||
}
|
||||
@ -226,13 +227,15 @@ TfLiteStatus ResizeAndTransposeWeights(TfLiteContext* context,
|
||||
GetTensorShape(transposed_weights),
|
||||
GetTensorData<uint8>(transposed_weights));
|
||||
} else if (weights->type == kTfLiteInt8) {
|
||||
// int16 transpose_conv also with int8 weights
|
||||
optimized_ops::Transpose(transpose_params, input_shape,
|
||||
GetTensorData<int8>(weights),
|
||||
GetTensorShape(transposed_weights),
|
||||
GetTensorData<int8>(transposed_weights));
|
||||
} else {
|
||||
context->ReportError(
|
||||
context, "Transpose conv only support float & uint8 right now.");
|
||||
context,
|
||||
"Transpose conv only support float, uint8, int8, int16 right now.");
|
||||
return kTfLiteError;
|
||||
}
|
||||
|
||||
@ -258,10 +261,14 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(output_shape), 1);
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(input), 4);
|
||||
TF_LITE_ENSURE_EQ(context, NumDimensions(weights), 4);
|
||||
TF_LITE_ENSURE(context, input->type == kTfLiteFloat32 ||
|
||||
input->type == kTfLiteUInt8 ||
|
||||
input->type == kTfLiteInt8);
|
||||
TF_LITE_ENSURE_EQ(context, weights->type, input->type);
|
||||
TF_LITE_ENSURE(context,
|
||||
input->type == kTfLiteFloat32 || input->type == kTfLiteUInt8 ||
|
||||
input->type == kTfLiteInt8 || input->type == kTfLiteInt16);
|
||||
if (input->type == kTfLiteInt16) {
|
||||
TF_LITE_ENSURE_EQ(context, weights->type, kTfLiteInt8);
|
||||
} else {
|
||||
TF_LITE_ENSURE_EQ(context, weights->type, input->type);
|
||||
}
|
||||
TF_LITE_ENSURE_EQ(context, output->type, input->type);
|
||||
// Ensure that weights and inputs have the same channel dimension.
|
||||
// Note: TOCO will reorder weights in the following format: OHWI.
|
||||
@ -305,12 +312,18 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
}
|
||||
}
|
||||
|
||||
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8) {
|
||||
if (input->type == kTfLiteUInt8 || input->type == kTfLiteInt8 ||
|
||||
input->type == kTfLiteInt16) {
|
||||
node->temporaries->data[data->scratch_tensor_index] =
|
||||
data->scratch_tensor_id;
|
||||
TfLiteTensor* scratch_buffer =
|
||||
GetTemporary(context, node, data->scratch_tensor_index);
|
||||
scratch_buffer->type = kTfLiteInt32;
|
||||
if (input->type == kTfLiteInt16) {
|
||||
scratch_buffer->type = kTfLiteInt64;
|
||||
} else {
|
||||
scratch_buffer->type = kTfLiteInt32;
|
||||
}
|
||||
|
||||
scratch_buffer->allocation_type = kTfLiteDynamic;
|
||||
if (!IsConstantTensor(output_shape)) {
|
||||
SetTensorToDynamic(scratch_buffer);
|
||||
@ -473,6 +486,38 @@ void EvalQuantizedPerChannel(TfLiteContext* context,
|
||||
}
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel16x8(TfLiteContext* context,
|
||||
const TfLiteTransposeConvParams* params,
|
||||
OpData* data, const TfLiteTensor* input,
|
||||
const TfLiteTensor* weights,
|
||||
const TfLiteTensor* transposed_weights,
|
||||
TfLiteTensor* col2im, TfLiteTensor* output,
|
||||
TfLiteTensor* scratch_buffer) {
|
||||
tflite::ConvParams op_params;
|
||||
op_params.padding_type = PaddingType::kSame;
|
||||
op_params.padding_values.width = data->padding.width;
|
||||
op_params.padding_values.height = data->padding.height;
|
||||
op_params.padding_values.width_offset = data->padding.width_offset;
|
||||
op_params.padding_values.height_offset = data->padding.height_offset;
|
||||
op_params.stride_width = params->stride_width;
|
||||
op_params.stride_height = params->stride_height;
|
||||
// Need to flip the sign of input offset to add it directly to the quantized
|
||||
// buffer.
|
||||
op_params.input_offset = -input->params.zero_point;
|
||||
op_params.output_offset = output->params.zero_point;
|
||||
op_params.quantized_activation_min = data->output_activation_min;
|
||||
op_params.quantized_activation_max = data->output_activation_max;
|
||||
|
||||
// Need to add optimized kernel
|
||||
reference_integer_ops::TransposeConv(
|
||||
op_params, data->per_channel_output_multiplier.data(),
|
||||
data->per_channel_output_shift.data(), GetTensorShape(input),
|
||||
GetTensorData<int16>(input), GetTensorShape(weights),
|
||||
GetTensorData<int8>(weights), GetTensorShape(output),
|
||||
GetTensorData<int16>(output), GetTensorShape(col2im),
|
||||
GetTensorData<int8>(col2im), GetTensorData<int64_t>(scratch_buffer));
|
||||
}
|
||||
|
||||
template <KernelType kernel_type>
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
// Retrieve tensors (All should be allocated by now)
|
||||
@ -513,7 +558,7 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
filter_height, filter_width, params->padding, &unused_output_height,
|
||||
&unused_output_width);
|
||||
|
||||
// Currently support float32 and uint8.
|
||||
// Currently support float32, uint8, int8, int16.
|
||||
switch (input->type) {
|
||||
case kTfLiteFloat32: {
|
||||
// Only for GenericOptimized path, we use transposed weights.
|
||||
@ -558,6 +603,21 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
output, scratch_buffer);
|
||||
break;
|
||||
}
|
||||
case kTfLiteInt16: {
|
||||
TfLiteTensor* scratch_buffer =
|
||||
GetTemporary(context, node, data->scratch_tensor_index);
|
||||
if (IsDynamicTensor(scratch_buffer)) {
|
||||
TF_LITE_ENSURE_OK(context,
|
||||
ResizeTensor(context, output_shape, scratch_buffer));
|
||||
}
|
||||
if (data->weights_are_transposed && !IsConstantTensor(weights)) {
|
||||
ResizeAndTransposeWeights(context, weights, transposed_weights);
|
||||
}
|
||||
EvalQuantizedPerChannel16x8(context, params, data, input, weights,
|
||||
transposed_weights, col2im, output,
|
||||
scratch_buffer);
|
||||
break;
|
||||
}
|
||||
default:
|
||||
context->ReportError(context, "Type '%s' is not currently supported.",
|
||||
TfLiteTypeGetName(input->type));
|
||||
|
@ -76,7 +76,10 @@ class BaseTransposeConvOpModel : public SingleOpModel {
|
||||
|
||||
if (test_type == TestType::DYNAMIC) {
|
||||
PopulateTensor<int32_t>(output_shape_, output_shape_data);
|
||||
PopulateTensor<InputType>(filter_, filter_data);
|
||||
if (!std::is_same<InputType, int16_t>::value &&
|
||||
!std::is_same<InputType, int8_t>::value) {
|
||||
PopulateTensor<InputType>(filter_, filter_data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,6 +88,8 @@ class BaseTransposeConvOpModel : public SingleOpModel {
|
||||
QuantizeAndPopulate<uint8_t>(input_, data);
|
||||
} else if (std::is_same<InputType, int8_t>::value) {
|
||||
QuantizeAndPopulate<int8_t>(input_, data);
|
||||
} else if (std::is_same<InputType, int16_t>::value) {
|
||||
QuantizeAndPopulate<int16_t>(input_, data);
|
||||
} else {
|
||||
PopulateTensor(input_, data);
|
||||
}
|
||||
@ -325,10 +330,6 @@ class PerChannelQuantizedTransposeConvOpModel
|
||||
GetZeroPoint(output_));
|
||||
}
|
||||
|
||||
void SetInput(const std::initializer_list<float>& data) {
|
||||
QuantizeAndPopulate<int8_t>(input_, data);
|
||||
}
|
||||
|
||||
void SetFilter(const std::initializer_list<float>& data) {
|
||||
PerChannelSymmetricQuantizeAndPopulate(filter_, data);
|
||||
}
|
||||
@ -451,6 +452,87 @@ TEST_P(TransposeConvOpTest, PaddingValidTestQuantized) {
|
||||
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 6, 6, 1}));
|
||||
}
|
||||
|
||||
class PerChannelQuantizedTransposeConvOpModel16x8
|
||||
: public BaseTransposeConvOpModel<int16_t> {
|
||||
public:
|
||||
using BaseTransposeConvOpModel::BaseTransposeConvOpModel;
|
||||
|
||||
std::vector<float> GetDequantizedOutput() {
|
||||
return Dequantize<int16_t>(ExtractVector<int16_t>(output_),
|
||||
GetScale(output_), GetZeroPoint(output_));
|
||||
}
|
||||
|
||||
void SetFilter(const std::initializer_list<float>& data) {
|
||||
PerChannelSymmetricQuantizeAndPopulate(filter_, data);
|
||||
}
|
||||
};
|
||||
|
||||
TEST_P(TransposeConvOpTest, SimpleTestQuantizedPerChannel16x8) {
|
||||
// TensorData(TensorType type = TensorType_FLOAT32, std::vector<int> shape =
|
||||
// {},
|
||||
// float min = 0.0f, float max = 0.0f, float scale = 0.0f,
|
||||
// int32_t zero_point = 0, bool per_channel_quantization = false,
|
||||
// std::vector<float> per_channel_quantization_scales = {},
|
||||
// std::vector<int64_t> per_channel_quantization_offsets = {},
|
||||
// int32_t channel_index = 0)
|
||||
const std::initializer_list<float> filter_data = {
|
||||
// [2 * 2 * 2 * 2] as [output_channel, y, x, input_channel]
|
||||
1, 2, // out channel = 0, y = 0, x = 0
|
||||
3, 4, // out channel = 0, y = 0, x = 1
|
||||
3, 4, // out channel = 0, y = 1, x = 0
|
||||
5, 6, // out channel = 0, y = 1, x = 1
|
||||
7, 8, // out channel = 1, y = 0, x = 0
|
||||
5, 6, // out channel = 1, y = 0, x = 1
|
||||
3, 4, // out channel = 1, y = 1, x = 0
|
||||
1, 2, // out channel = 1, y = 1, x = 1
|
||||
};
|
||||
PerChannelQuantizedTransposeConvOpModel16x8 model(
|
||||
GetRegistration(),
|
||||
/*output_shape_data=*/{1, 2, 3, 2},
|
||||
/*filter=*/
|
||||
{TensorType_INT8,
|
||||
/*shape=*/{2, 2, 2, 2},
|
||||
/*min=*/-64, /*max=*/64,
|
||||
/*scale=*/0, /*zero_point=*/0,
|
||||
/*per_channel=*/true,
|
||||
/*per_channel_scales=*/{7.0 / 127, 8.0 / 127},
|
||||
/*per_channel_offsets=*/{0, 0},
|
||||
/*channel_index=*/0},
|
||||
/*filter_data=*/{},
|
||||
/*input=*/
|
||||
{TensorType_INT16,
|
||||
/*shape=*/{1, 2, 3, 2},
|
||||
/*min=*/0, /*max=*/0,
|
||||
/*scale=*/4.0 / 127,
|
||||
/*zero_point=*/0},
|
||||
/*output=*/
|
||||
{TensorType_INT16,
|
||||
/*shape=*/{},
|
||||
/*min=*/0, /*max=*/0,
|
||||
/*scale=*/1.0,
|
||||
/*zero_point=*/0},
|
||||
/*padding=*/Padding_SAME,
|
||||
/*stride_w=*/1, /*stride_h=*/1, GetTestType());
|
||||
model.SetInput({
|
||||
// [1 * 2 * 3 * 2] as [batch, y, x, input_channel]
|
||||
3, 2, // batch = 0, y = 0, x = 0
|
||||
1, -1, // batch = 0, y = 0, x = 1
|
||||
-2, -3, // batch = 0, y = 0, x = 2
|
||||
4, 3, // batch = 0, y = 1, x = 0
|
||||
2, -2, // batch = 0, y = 1, x = 1
|
||||
-3, -4, // batch = 0, y = 1, x = 2
|
||||
});
|
||||
model.SetFilter(filter_data);
|
||||
model.Invoke();
|
||||
|
||||
EXPECT_THAT(model.GetDequantizedOutput(),
|
||||
ElementsAreArray(ArrayFloatNear(
|
||||
{7, 37, 16, 26, -9, -39, 27, 69, 48, 42, -32, -74}, 1e-5)));
|
||||
|
||||
// GetOutputShape() should always be same as model.SetOutputShape(...);
|
||||
EXPECT_THAT(model.GetOutputShape(), ElementsAreArray({1, 2, 3, 2}));
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_SUITE_P(
|
||||
TransposeConvOpTest, TransposeConvOpTest,
|
||||
::testing::Combine(
|
||||
|
Loading…
Reference in New Issue
Block a user