Add unit test for Prelu in XNNPACK delegate
- Add PreluTester class and unit test for XNNPACK-delegated Prelu operator - Relax restrictions on the number of input/output dimensions in delegated Prelu operators PiperOrigin-RevId: 317735911 Change-Id: Iddf727f5f916b142412a1be44efa1f367dc31d49
This commit is contained in:
parent
20572f9ed0
commit
e6ada6a6b4
|
@ -180,23 +180,6 @@ cc_library(
|
|||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "prelu_tester",
|
||||
testonly = 1,
|
||||
srcs = ["prelu_tester.cc"],
|
||||
hdrs = ["prelu_tester.h"],
|
||||
deps = [
|
||||
"//tensorflow/lite:framework",
|
||||
"//tensorflow/lite:schema_fbs_version",
|
||||
"//tensorflow/lite/c:common",
|
||||
"//tensorflow/lite/kernels:builtin_ops",
|
||||
"//tensorflow/lite/schema:schema_fbs",
|
||||
"@FP16",
|
||||
"@com_google_googletest//:gtest",
|
||||
"@flatbuffers",
|
||||
],
|
||||
)
|
||||
|
||||
cc_library(
|
||||
name = "reduce_tester",
|
||||
testonly = 1,
|
||||
|
@ -544,21 +527,6 @@ cc_test(
|
|||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "prelu_test",
|
||||
srcs = ["prelu_test.cc"],
|
||||
linkopts = select({
|
||||
"//tensorflow:emscripten": EMSCRIPTEN_LINKOPTS,
|
||||
"//conditions:default": [],
|
||||
}),
|
||||
deps = [
|
||||
":prelu_tester",
|
||||
":test_main",
|
||||
":xnnpack_delegate_test_mode",
|
||||
"@com_google_googletest//:gtest",
|
||||
],
|
||||
)
|
||||
|
||||
cc_test(
|
||||
name = "relu_test",
|
||||
srcs = ["relu_test.cc"],
|
||||
|
|
|
@ -21,6 +21,7 @@ limitations under the License.
|
|||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
|
|
@ -1,565 +0,0 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <memory>
|
||||
#include <random>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/delegates/xnnpack/prelu_tester.h"
|
||||
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy4D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({batch, height, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 4DBy4DBroadcastChannels) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({1, 1, 1, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy4DBroadcastWidth) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({1, 1, width, 1})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy4DBroadcastHeight) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({1, height, 1, 1})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy4DBroadcastBatch) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({batch, 1, 1, 1})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy4DBroadcastHeightWidthChannels) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({1, height, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy3D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({height, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy2D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 4DBy1D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_4DBy0D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_3DBy3D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({batch, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 3DBy3DBroadcastChannels) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({1, 1, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_3DBy3DBroadcastWidth) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({1, width, 1})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_3DBy3DBroadcastBatch) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({batch, 1, 1})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_3DBy3DBroadcastWidthChannels) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({1, width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_3DBy2D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({width, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 3DBy1D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_3DBy0D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, width, channels})
|
||||
.SlopeShape({})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_2DBy2D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, channels})
|
||||
.SlopeShape({batch, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 2DBy2DBroadcastChannels) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, channels})
|
||||
.SlopeShape({1, channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_2DBy2DBroadcastBatch) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, channels})
|
||||
.SlopeShape({batch, 1})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 2DBy1D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, channels})
|
||||
.SlopeShape({channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_2DBy0D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, channels})
|
||||
.SlopeShape({})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, 1DBy1D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
|
||||
PreluTester().InputShape({batch}).SlopeShape({batch}).Test(
|
||||
xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, DISABLED_1DBy0D) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
|
||||
PreluTester().InputShape({batch}).SlopeShape({}).Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, FP16Weights) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({channels})
|
||||
.FP16Weights()
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, SparseWeights) {
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(nullptr),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({channels})
|
||||
.SparseWeights()
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
TEST(Prelu, MultiThreading) {
|
||||
TfLiteXNNPackDelegateOptions delegate_options =
|
||||
TfLiteXNNPackDelegateOptionsDefault();
|
||||
delegate_options.num_threads = 2;
|
||||
std::unique_ptr<TfLiteDelegate, decltype(&TfLiteXNNPackDelegateDelete)>
|
||||
xnnpack_delegate(TfLiteXNNPackDelegateCreate(&delegate_options),
|
||||
TfLiteXNNPackDelegateDelete);
|
||||
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto shape_rng =
|
||||
std::bind(std::uniform_int_distribution<int32_t>(2, 5), std::ref(rng));
|
||||
const auto batch = shape_rng();
|
||||
const auto height = shape_rng();
|
||||
const auto width = shape_rng();
|
||||
const auto channels = shape_rng();
|
||||
|
||||
PreluTester()
|
||||
.InputShape({batch, height, width, channels})
|
||||
.SlopeShape({channels})
|
||||
.Test(xnnpack_delegate.get());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
|
@ -1,237 +0,0 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#include "tensorflow/lite/delegates/xnnpack/prelu_tester.h"
|
||||
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <numeric>
|
||||
#include <random>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "third_party/FP16/include/fp16.h"
|
||||
#include "flatbuffers/flatbuffers.h" // from @flatbuffers
|
||||
#include "tensorflow/lite/interpreter.h"
|
||||
#include "tensorflow/lite/kernels/register.h"
|
||||
#include "tensorflow/lite/model.h"
|
||||
#include "tensorflow/lite/schema/schema_generated.h"
|
||||
#include "tensorflow/lite/version.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
void PreluTester::Test(TfLiteDelegate* delegate) const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto input_rng = std::bind(std::uniform_real_distribution<float>(-1.0f, 1.0f),
|
||||
std::ref(rng));
|
||||
|
||||
std::vector<char> buffer = CreateTfLiteModel();
|
||||
const Model* model = GetModel(buffer.data());
|
||||
|
||||
std::unique_ptr<Interpreter> delegate_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&delegate_interpreter),
|
||||
kTfLiteOk);
|
||||
std::unique_ptr<Interpreter> default_interpreter;
|
||||
ASSERT_EQ(
|
||||
InterpreterBuilder(model, ::tflite::ops::builtin::BuiltinOpResolver())(
|
||||
&default_interpreter),
|
||||
kTfLiteOk);
|
||||
|
||||
ASSERT_TRUE(delegate_interpreter);
|
||||
ASSERT_TRUE(default_interpreter);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->inputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->inputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->outputs().size(), 1);
|
||||
ASSERT_EQ(default_interpreter->outputs().size(), 1);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
ASSERT_EQ(default_interpreter->AllocateTensors(), kTfLiteOk);
|
||||
|
||||
ASSERT_EQ(delegate_interpreter->ModifyGraphWithDelegate(delegate), kTfLiteOk);
|
||||
|
||||
float* default_input_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->inputs()[0]);
|
||||
std::generate(default_input_data,
|
||||
default_input_data + ComputeSize(InputShape()),
|
||||
std::ref(input_rng));
|
||||
|
||||
float* xnnpack_input_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->inputs()[0]);
|
||||
std::copy(default_input_data, default_input_data + ComputeSize(InputShape()),
|
||||
xnnpack_input_data);
|
||||
|
||||
ASSERT_EQ(default_interpreter->Invoke(), kTfLiteOk);
|
||||
ASSERT_EQ(delegate_interpreter->Invoke(), kTfLiteOk);
|
||||
|
||||
float* default_output_data = default_interpreter->typed_tensor<float>(
|
||||
default_interpreter->outputs()[0]);
|
||||
float* xnnpack_output_data = delegate_interpreter->typed_tensor<float>(
|
||||
delegate_interpreter->outputs()[0]);
|
||||
|
||||
for (size_t i = 0; i < ComputeSize(OutputShape()); i++) {
|
||||
ASSERT_EQ(default_output_data[i], xnnpack_output_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<char> PreluTester::CreateTfLiteModel() const {
|
||||
std::random_device random_device;
|
||||
auto rng = std::mt19937(random_device());
|
||||
auto slope_rng = std::bind(std::uniform_real_distribution<float>(0.25f, 0.5f),
|
||||
std::ref(rng));
|
||||
|
||||
flatbuffers::FlatBufferBuilder builder;
|
||||
std::vector<flatbuffers::Offset<OperatorCode>> operator_codes{
|
||||
{CreateOperatorCode(builder, BuiltinOperator_PRELU)}};
|
||||
if (FP16Weights()) {
|
||||
operator_codes.emplace_back(
|
||||
CreateOperatorCode(builder, BuiltinOperator_DEQUANTIZE));
|
||||
} else if (SparseWeights()) {
|
||||
operator_codes.emplace_back(
|
||||
CreateOperatorCode(builder, BuiltinOperator_DENSIFY));
|
||||
}
|
||||
|
||||
std::vector<flatbuffers::Offset<Buffer>> buffers{{
|
||||
CreateBuffer(builder, builder.CreateVector({})),
|
||||
}};
|
||||
|
||||
if (FP16Weights()) {
|
||||
std::vector<uint16_t> slope_data(ComputeSize(SlopeShape()));
|
||||
std::generate(slope_data.begin(), slope_data.end(),
|
||||
std::bind(fp16_ieee_from_fp32_value, slope_rng));
|
||||
|
||||
buffers.push_back(CreateBuffer(
|
||||
builder, builder.CreateVector(
|
||||
reinterpret_cast<const uint8_t*>(slope_data.data()),
|
||||
sizeof(uint16_t) * slope_data.size())));
|
||||
} else {
|
||||
std::vector<float> slope_data(ComputeSize(SlopeShape()));
|
||||
std::generate(slope_data.begin(), slope_data.end(), slope_rng);
|
||||
|
||||
buffers.push_back(CreateBuffer(
|
||||
builder, builder.CreateVector(
|
||||
reinterpret_cast<const uint8_t*>(slope_data.data()),
|
||||
sizeof(float) * slope_data.size())));
|
||||
}
|
||||
|
||||
std::vector<flatbuffers::Offset<Tensor>> tensors;
|
||||
std::vector<flatbuffers::Offset<Operator>> operators;
|
||||
if (FP16Weights()) {
|
||||
tensors.emplace_back(CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(SlopeShape().data(), SlopeShape().size()),
|
||||
TensorType_FLOAT16, /*buffer=*/1));
|
||||
} else if (SparseWeights()) {
|
||||
const int dims_count = SlopeShape().size();
|
||||
std::vector<flatbuffers::Offset<DimensionMetadata>> dim_metadata(
|
||||
dims_count);
|
||||
std::vector<int> traversal_order(dims_count);
|
||||
for (int i = 0; i < dims_count; i++) {
|
||||
traversal_order[i] = i;
|
||||
dim_metadata[i] = CreateDimensionMetadata(builder, DimensionType_DENSE,
|
||||
SlopeShape()[i]);
|
||||
}
|
||||
const flatbuffers::Offset<SparsityParameters> sparsity_param =
|
||||
CreateSparsityParameters(builder, builder.CreateVector(traversal_order),
|
||||
0, builder.CreateVector(dim_metadata));
|
||||
tensors.emplace_back(CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(SlopeShape().data(), SlopeShape().size()),
|
||||
TensorType_FLOAT32, /*buffer=*/1, /*name=*/0, /*quantization=*/0,
|
||||
/*is_variable=*/false, /*sparsity=*/sparsity_param));
|
||||
}
|
||||
if (FP16Weights()) {
|
||||
const std::array<int32_t, 1> dequantize_inputs{{0}};
|
||||
const std::array<int32_t, 1> dequantize_outputs{{2}};
|
||||
operators.emplace_back(CreateOperator(
|
||||
builder, /*opcode_index=*/1,
|
||||
builder.CreateVector<int32_t>(dequantize_inputs.data(),
|
||||
dequantize_inputs.size()),
|
||||
builder.CreateVector<int32_t>(dequantize_outputs.data(),
|
||||
dequantize_outputs.size())));
|
||||
} else if (SparseWeights()) {
|
||||
const std::array<int32_t, 1> densify_inputs{{0}};
|
||||
const std::array<int32_t, 1> densify_outputs{{2}};
|
||||
operators.emplace_back(
|
||||
CreateOperator(builder, /*opcode_index=*/1,
|
||||
builder.CreateVector<int32_t>(densify_inputs.data(),
|
||||
densify_inputs.size()),
|
||||
builder.CreateVector<int32_t>(densify_outputs.data(),
|
||||
densify_outputs.size())));
|
||||
}
|
||||
tensors.emplace_back(CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(InputShape().data(), InputShape().size()),
|
||||
TensorType_FLOAT32));
|
||||
tensors.emplace_back(CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(SlopeShape().data(), SlopeShape().size()),
|
||||
TensorType_FLOAT32,
|
||||
/*buffer=*/(FP16Weights() || SparseWeights()) ? 0 : 1));
|
||||
tensors.emplace_back(CreateTensor(
|
||||
builder,
|
||||
builder.CreateVector<int32_t>(OutputShape().data(), OutputShape().size()),
|
||||
TensorType_FLOAT32));
|
||||
|
||||
const std::array<int32_t, 2> op_inputs{
|
||||
{static_cast<int>(tensors.size()) - 3,
|
||||
static_cast<int>(tensors.size()) - 2}};
|
||||
const std::array<int32_t, 1> op_outputs{
|
||||
{static_cast<int>(tensors.size()) - 1}};
|
||||
operators.emplace_back(CreateOperator(
|
||||
builder, /*opcode_index=*/0,
|
||||
builder.CreateVector<int32_t>(op_inputs.data(), op_inputs.size()),
|
||||
builder.CreateVector<int32_t>(op_outputs.data(), op_outputs.size())));
|
||||
|
||||
const std::array<int32_t, 1> subgraph_inputs{
|
||||
{static_cast<int32_t>(tensors.size() - 3)}};
|
||||
const std::array<int32_t, 1> subgraph_outputs{
|
||||
{static_cast<int32_t>(tensors.size()) - 1}};
|
||||
flatbuffers::Offset<SubGraph> subgraph = CreateSubGraph(
|
||||
builder, builder.CreateVector(tensors.data(), tensors.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_inputs.data(),
|
||||
subgraph_inputs.size()),
|
||||
builder.CreateVector<int32_t>(subgraph_outputs.data(),
|
||||
subgraph_outputs.size()),
|
||||
builder.CreateVector(operators.data(), operators.size()));
|
||||
|
||||
flatbuffers::Offset<flatbuffers::String> description =
|
||||
builder.CreateString("PReLU model");
|
||||
|
||||
flatbuffers::Offset<Model> model_buffer = CreateModel(
|
||||
builder, TFLITE_SCHEMA_VERSION,
|
||||
builder.CreateVector(operator_codes.data(), operator_codes.size()),
|
||||
builder.CreateVector(&subgraph, 1), description,
|
||||
builder.CreateVector(buffers.data(), buffers.size()));
|
||||
|
||||
builder.Finish(model_buffer);
|
||||
|
||||
return std::vector<char>(builder.GetBufferPointer(),
|
||||
builder.GetBufferPointer() + builder.GetSize());
|
||||
}
|
||||
|
||||
int32_t PreluTester::ComputeSize(const std::vector<int32_t>& shape) {
|
||||
return std::accumulate(shape.cbegin(), shape.cend(), 1,
|
||||
std::multiplies<int32_t>());
|
||||
}
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
|
@ -1,88 +0,0 @@
|
|||
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
==============================================================================*/
|
||||
|
||||
#ifndef TENSORFLOW_LITE_DELEGATES_XNNPACK_PRELU_TESTER_H_
|
||||
#define TENSORFLOW_LITE_DELEGATES_XNNPACK_PRELU_TESTER_H_
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
#include "tensorflow/lite/c/common.h"
|
||||
|
||||
namespace tflite {
|
||||
namespace xnnpack {
|
||||
|
||||
class PreluTester {
|
||||
public:
|
||||
PreluTester() = default;
|
||||
PreluTester(const PreluTester&) = delete;
|
||||
PreluTester& operator=(const PreluTester&) = delete;
|
||||
|
||||
inline PreluTester& InputShape(std::initializer_list<int32_t> shape) {
|
||||
for (auto it = shape.begin(); it != shape.end(); ++it) {
|
||||
EXPECT_GT(*it, 0);
|
||||
}
|
||||
input_shape_ = std::vector<int32_t>(shape.begin(), shape.end());
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const std::vector<int32_t>& InputShape() const { return input_shape_; }
|
||||
|
||||
inline PreluTester& SlopeShape(std::initializer_list<int32_t> shape) {
|
||||
for (auto it = shape.begin(); it != shape.end(); ++it) {
|
||||
EXPECT_GT(*it, 0);
|
||||
}
|
||||
slope_shape_ = std::vector<int32_t>(shape.begin(), shape.end());
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline const std::vector<int32_t>& SlopeShape() const { return slope_shape_; }
|
||||
|
||||
inline const std::vector<int32_t>& OutputShape() const {
|
||||
return InputShape();
|
||||
}
|
||||
|
||||
inline PreluTester& FP16Weights() {
|
||||
fp16_weights_ = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline bool FP16Weights() const { return fp16_weights_; }
|
||||
|
||||
inline PreluTester& SparseWeights() {
|
||||
sparse_weights_ = true;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inline bool SparseWeights() const { return sparse_weights_; }
|
||||
|
||||
void Test(TfLiteDelegate* delegate) const;
|
||||
|
||||
private:
|
||||
std::vector<char> CreateTfLiteModel() const;
|
||||
|
||||
static int32_t ComputeSize(const std::vector<int32_t>& shape);
|
||||
|
||||
std::vector<int32_t> input_shape_;
|
||||
std::vector<int32_t> slope_shape_;
|
||||
bool fp16_weights_ = false;
|
||||
bool sparse_weights_ = false;
|
||||
};
|
||||
|
||||
} // namespace xnnpack
|
||||
} // namespace tflite
|
||||
|
||||
#endif // TENSORFLOW_LITE_DELEGATES_XNNPACK_PRELU_TESTER_H_
|
|
@ -2266,8 +2266,7 @@ class Subgraph {
|
|||
const TfLiteTensor& input_tensor = tensors[node->inputs->data[0]];
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
|
||||
logging_context, input_tensor, node->inputs->data[0], node_index));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, input_tensor, 1,
|
||||
XNN_MAX_TENSOR_DIMS,
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, input_tensor, 4,
|
||||
node->inputs->data[0]));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
|
||||
logging_context, input_tensor, node->inputs->data[0], node_index));
|
||||
|
@ -2285,8 +2284,7 @@ class Subgraph {
|
|||
const TfLiteTensor& output_tensor = tensors[node->outputs->data[0]];
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorFloatType(
|
||||
logging_context, output_tensor, node->outputs->data[0], node_index));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, output_tensor, 1,
|
||||
XNN_MAX_TENSOR_DIMS,
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorShape(logging_context, output_tensor, 4,
|
||||
node->outputs->data[0]));
|
||||
TF_LITE_ENSURE_STATUS(CheckTensorNonDynamicAllocation(
|
||||
logging_context, output_tensor, node->outputs->data[0], node_index));
|
||||
|
|
Loading…
Reference in New Issue