tfprof: "Swiss Army Knife Tool" To Explore Your Model.

Change: 133968335
This commit is contained in:
A. Unique TensorFlower 2016-09-22 09:19:06 -08:00 committed by TensorFlower Gardener
parent 64a170499d
commit e4a63b578f
41 changed files with 4793 additions and 8 deletions

13
linenoise.BUILD Normal file
View File

@ -0,0 +1,13 @@
licenses(["notice"]) # 2-clause BSD
exports_files(["LICENSE"])
package(
default_visibility = ["//visibility:public"],
)
cc_library(
name = "linenoise",
srcs = ["linenoise.c"],
hdrs = ["linenoise.h"],
)

View File

@ -124,6 +124,9 @@ filegroup(
"//tensorflow/contrib/tensor_forest/hybrid:all_files",
"//tensorflow/contrib/tensorboard:all_files",
"//tensorflow/contrib/testing:all_files",
"//tensorflow/contrib/tfprof/python/tools/tfprof:all_files",
"//tensorflow/contrib/tfprof/tools/tfprof:all_files",
"//tensorflow/contrib/tfprof/tools/tfprof/internal:all_files",
"//tensorflow/contrib/training:all_files",
"//tensorflow/contrib/util:all_files",
"//tensorflow/core:all_files",

View File

@ -0,0 +1,453 @@
# tfprof: A Profiling Tool for TensorFlow Models
go/tfprof
Author: Xin Pan (xpan@google.com, github: panyx0718)
Consultants: Jon Shlens (shlens@google.com), Pete Warden (petewarden@google.com)
[TOC]
## Introduction
tfprof is a profiling tool for TensorFlow that analyzes model architectures
and measures system performance.
###Major Features
1. Measure model parameters, float operations, tensor shapes.
2. Measure op execution times, requested memory size and device placement.
3. Inspect checkpoint tensors' shapes and their values.
4. Explore model based on name scope or graph structure.
5. Selectively grouping/filtering/accounting/ordering ops.
### Interfaces
[CLI Tutorials](#cli-tutorials):
It supports interactive mode for exploration and single-shot mode for
scripts. Outputs can be dumped to files or printed in terminal.
Python API Tutorials: Python API is not released yet.
## CLI Tutorials
Tutorials are based on a 32 layers ResNet.
TODO(xpan): Provide graph.pbtxt, model.ckpt, tfprof_log and run_meta download.
### Examples
1) Start `tfprof` command line tool
```shell
# Build the tool.
bazel build -c opt tensorflow/contrib/tfprof/...
# Help information, including detail 'option' instructions.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof help
#
# The following commands will start tfprof interactive mode.
#
# Profile model shapes and parameters only.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
--graph_path=/graph.pbtxt
#
# Additionally profile checkpoint statistics and values.
# Use '-account_type_regexes _checkpoint_variables' to select
# checkpoint tensors.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
--graph_path=graph.pbtxt \
--checkpoint_path=model.ckpt
#
# Additionally profile ops requested memory and timing.
# See CLI Input Files section on generating run_meta file.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
--graph_path=graph.pbtxt \
--run_meta_path=run_meta \
--checkpoint_path=model.ckpt
#
# tfprof_log is used to define customized op types and float ops.
# Use tfprof_logger.write_op_log() to create tfprof_log.
# See 11) in Examples section on generating tfprof_log file.
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
--graph_path=graph.pbtxt \
--run_meta_path=run_meta \
--op_log_path=tfprof_log \
--checkpoint_path=model.ckpt
```
Note that `graph.pbtxt` is an ASCII text format.
2) Press enter to show the default options
```shell
tfprof>
tfprof>
-max_depth 4
-min_bytes 0
-min_micros 0
-min_params 0
-min_float_ops 0
-device_regexes .*
-order_by name
-account_type_regexes Variable
-start_name_regexes .*
-trim_name_regexes
-show_name_regexes .*
-hide_name_regexes IsVariableInitialized_[0-9]+,save\/.*,^zeros[0-9_]*
-account_displayed_op_only false
# supported select fileds. Availability depends on --[run_meta|checkpoint|op_log]_path.
# [bytes|micros|params|float_ops|num_hidden_ops|tensor_value|device|op_types]
-select params
-viz false
-dump_to_file
```
3) I want to see the `BatchNorm`'s gamma value in checkpoint.
```shell
# Requires --graph_path, --checkpoint_path.
tfprof> scope -show_name_regexes unit_1_0.*gamma -select tensor_value -max_depth 5
_TFProfRoot ()
unit_1_0/shared_activation/init_bn/gamma ()
[1.80 2.10 2.06 1.91 2.26 1.86 1.81 1.37 1.78 1.85 1.96 1.54 2.04 2.34 2.22 1.99 ],
unit_1_0/sub2/bn2/gamma ()
[1.57 1.83 1.30 1.25 1.59 1.14 1.26 0.82 1.19 1.10 1.48 1.01 0.82 1.23 1.21 1.14 ],
```
4) I want to see my checkpoint tensors shape and number of parameters.
```shell
# Requires --graph_path, --checkpoint_path.
# Increase -max_depth to see all tensors.
tfprof> scope -account_type_regexes _checkpoint_variables -select params -max_depth 4
_TFProfRoot (--/930.58k params)
global_step (0/0 params)
init/init_conv/DW (3x3x3x16, 432/864 params)
pool_logit/DW (64x10, 640/1.28k params)
pool_logit/DW/Momentum (64x10, 640/640 params)
pool_logit/biases (10, 10/20 params)
pool_logit/biases/Momentum (10, 10/10 params)
unit_last/final_bn/beta (64, 64/128 params)
unit_last/final_bn/gamma (64, 64/128 params)
unit_last/final_bn/moving_mean (64, 64/64 params)
unit_last/final_bn/moving_variance (64, 64/64 params)
```
5) I defined an op named cost to calculate the loss. I want to know what ops
it depends on take a long time to run. Hint: Use the graph command to explore
graph dependencies.
```shell
# Requires --graph_path, --run_meta_path.
tfprof> graph -start_name_regexes cost.* -max_depth 100 -min_micros 10000 -select micros -account_type_regexes .*
_TFProfRoot (0us/3.61sec)
init/init_conv/Conv2D (11.75ms/3.10sec)
random_shuffle_queue_DequeueMany (3.09sec/3.09sec)
unit_1_0/sub2/conv2/Conv2D (74.14ms/3.19sec)
unit_1_3/sub2/conv2/Conv2D (60.75ms/3.34sec)
unit_2_4/sub2/conv2/Conv2D (73.58ms/3.54sec)
unit_3_3/sub2/conv2/Conv2D (10.26ms/3.60sec)
```
6) I want to know the expensive operations during the back propagation.
Hint: tensorflow prepend gradient to your defined name scopes. Use the scope
command to explore based on name scope hierarchies.
```shell
# Requires --graph_path, --run_meta_path.
tfprof> scope -start_name_regexes gradient.* -max_depth 100 -min_micros 20000 -select micros -account_type_regexes .*
_TFProfRoot (0us/2.29sec)
gradients/unit_1_0/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (54.96ms/54.96ms)
gradients/unit_1_0/sub2/conv2/Conv2D_grad/Conv2DBackpropFilter (83.63ms/83.63ms)
gradients/unit_1_1/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (99.25ms/99.25ms)
gradients/unit_1_2/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (95.40ms/95.40ms)
gradients/unit_1_2/sub2/conv2/Conv2D_grad/Conv2DBackpropFilter (99.83ms/99.83ms)
gradients/unit_1_3/sub1/conv1/Conv2D_grad/Conv2DBackpropFilter (95.39ms/95.39ms)
...
```
7) Show the number of float operations in the model.
Note: float operations calculation depends on
1) op.RegisterStatistics. If an op doesnt
have RegisterStatistics defined, its float operations cannot be counted.
2) fully defined shape is also necessary in order to calculate flops.
float operations number is provided by tensorflow::tfprof::OpLog logged from
Python API.
```shell
# Requires --graph_path, --op_log_path.
tfprof> scope -min_float_ops 1 -max_depth 10 -select float_ops -account_type_regexes .*
_TFProfRoot (0/17.63b flops)
gradients/pool_logit/xw_plus_b/MatMul_grad/MatMul (163.84k/163.84k flops)
gradients/pool_logit/xw_plus_b/MatMul_grad/MatMul_1 (163.84k/163.84k flops)
init/init_conv/Conv2D (113.25m/113.25m flops)
pool_logit/xw_plus_b (1.28k/165.12k flops)
pool_logit/xw_plus_b/MatMul (163.84k/163.84k flops)
unit_1_0/sub1/conv1/Conv2D (603.98m/603.98m flops)
unit_1_0/sub2/conv2/Conv2D (603.98m/603.98m flops)
unit_1_1/sub1/conv1/Conv2D (603.98m/603.98m flops)
unit_1_1/sub2/conv2/Conv2D (603.98m/603.98m flops)
...
```
8) Show the number of parameters of all `tf.trainable_variables()` in the model.
```shell
# Requires --graph_path --op_log_path.
# store option for future commands.
tfprof> set -account_type_regexes _trainable_variables
tfprof> scope -max_depth 4 -select params
_TFProfRoot (--/464.15k params)
init/init_conv/DW (3x3x3x16, 432/432 params)
pool_logit/DW (64x10, 640/640 params)
pool_logit/biases (10, 10/10 params)
unit_last/final_bn/beta (64, 64/64 params)
unit_last/final_bn/gamma (64, 64/64 params)
```
Where does “_trainable_variables” come from? It is from the OpLog file
generated by write_op_log() Python API. write_op_log() help users create some
common op types implicitly. Users can define their own op types and log it
through the write_op_log() API.
9) What if Im lazy and dont want to define op type? I have given my ops
well-defined names in my models code. And want to use names to select a group
of ops. Lets try it!
```shell
tfprof> set -account_type_regexes .*
tfprof> scope -show_name_regexes unit_2_1.*DW -max_depth 100 -account_displayed_op_only
_TFProfRoot (0/18.43k params)
unit_2_1/sub1/conv1/DW (3x3x32x32, 9.22k/9.22k params)
unit_2_1/sub2/conv2/DW (3x3x32x32, 9.22k/9.22k params)
```
The above command allows you to filter ops that match specific names.
`-account_displayed_op_only` asks tfprof to only account ops displayed
in terminal. Otherwise, tfprof accounts all ops matched by
`-account_type_regexes` recursively even if they are hidden due to some
options such as -max_depth.
10) TensorFlow has built-in op types. For example, built-in op type `Variable`
seems to include `Variable's` created by your model. However, be careful when
depending on it because TensorFlow creates extra `Variable` ops implicitly and
the implicitly created ops can have the same prefix as the `Variable's` you
defined.
In the following example, extra `Variables` are created and “/Momentum” is
appended to their names. This might cause you “model capacity” calculation
to get wrong.
```shell
tfprof> scope -account_type_regexes Variable -max_depth 4 -select params
_TFProfRoot (--/930.58k params)
global_step (1/1 params)
init/init_conv/DW (3x3x3x16, 432/864 params)
pool_logit/DW (64x10, 640/1.28k params)
pool_logit/DW/Momentum (64x10, 640/640 params)
pool_logit/biases (10, 10/20 params)
pool_logit/biases/Momentum (10, 10/10 params)
unit_last/final_bn/beta (64, 64/128 params)
unit_last/final_bn/gamma (64, 64/128 params)
unit_last/final_bn/moving_mean (64, 64/64 params)
unit_last/final_bn/moving_variance (64, 64/64 params)
```
11) A example of defining extra op type for ops using `OpLog`
First, in Python code, create an `OpLog` proto and add op type
information to it:
```python
op_log = tfprof_log_pb2.OpLog()
entry = op_log.log_entries.add()
entry.name = 'pool_logit/DW'
entry.types.append('pool_logit')
entry = op_log.log_entries.add()
entry.name = 'pool_logit/biases'
# Alternatively:
# var = tf.get_variable(xxx)
# entry.name = var.op.name
entry.types.append('pool_logit')
```
Second, call write_op_log to write the OpLog proto.
```python
tfprof_logger.write_op_log(sess.graph, /tmp/my_op_log_dir, op_log)
```
Third, when starting the tfprof tool, specify
"--op_log_path /tmp/my_op_log_dir/op_log"
```shell
tfprof> scope -account_type_regexes pool_logit -max_depth 4 -select params
_TFProfRoot (--/650 params)
pool_logit/DW (64x10, 640/640 params)
pool_logit/biases (10, 10/10 params)
```
Note that when you call
`tfprof_logger.write_op_log(...)`, the tool adds all `Variables` inside
`tf.trainable_variables()` to `_trainable_variables`.
12) Run tfprof in one-shot mode and dump result to file.
```shell
# Printed to stdout if --dump_to_file is not set.
tfprof scope --graph_path /cns/ij-d/home/xpan/tfprof/graph.pbtxt \
--max_depth 3 \
--dump_to_file "/tmp/dump"
Reading Files...
Parsing GraphDef...
Preparing Views...
cat /tmp/dump
_TFProfRoot (--/930.58k params)
global_step (0/0 params)
pool_logit/DW (64x10, 640/1.28k params)
pool_logit/biases (10, 10/20 params)
```
13) Analyze how balanced Variable are on parameter servers.
In this tutorial, I'm going to use a seq2seq model, which are split
on several gpus at workers and several parameter servers.
In tfprof, 'device' is an op_type. For example, if op1 and op2 are placed on
gpu0. They share an op_type called 'gpu0'.
```shell
bazel-bin/tensorflow/contrib/tfprof/tools/tfprof/tfprof \
--graph_path ~/tfprof/textsum/graph.pbtxt \
--run_meta_path ~/tfprof/textsum/run_meta
# Looks like ps task 1 is holding twice more parameters than task 0.
tfprof> scope -select device,params -account_type_regexes .*ps.*task:0.* -max_depth 1
_TFProfRoot (--/25.81m params)
tfprof> scope -select device,params -account_type_regexes .*ps.*task:1.* -max_depth 1
_TFProfRoot (--/58.84m params)
```
### CLI Input Files
tfprof command line inference (CLI) loads dumped files from a tensorflow model.
Convert them into in-memory data structures. To use it, users need to specify
the locations of the dumped files. The following are the dumped files loaded
by tfprof:
<b>--graph_path:</b> GraphDef text file (required). Used to build in-memory
representation of the model. For example, graph.pbtxt written by tf.Supervisor
is a candidate. If you are not using tf.Supervisor, you can easily get GraphDef
using tf.Graph.as_graph_def() or other API.
<b>--run_meta_path:</b> tensorflow::RunMetadata.
Used to get the memory and time consumption of
each op of the model. Users need to enable it. For example, the following code
snippet writes a RunMetadata file:
```python
run_options = config_pb2.RunOptions(trace_level=config_pb2.RunOptions.FULL_TRACE)
run_metadata = config_pb2.RunMetadata()
# Once a while, call it the get the RunMeta.
_ = self._sess.run(..., options=run_options, run_metadata=run_metadata)
with gfile.Open(os.path.join(output_dir, "run_meta"), "w") as f:
f.write(run_metadata.SerializeToString())
```
<b>--op_log_path:</b>
tensorflow::tfprof::OpLog. A proto used to provide extra op information
for ops. By giving a group of ops a type name, users can easily aggregate the
statistics for those ops without accidently missing or including extra ops.
tfprof exposes the following Python API to add op information and logging.
```python
def write_op_log(graph, log_dir, op_log=None)
```
<b>--checkpoint_path:</b>
TensorFlow checkpoint. It defines _checkpoint_variable op type. It also
provides checkpointed tensors' values.
## Design
### In-memory representation
<b>Scope:</b> This representation organizes ops based on name scope hierarchy,
similar to filesystem hierarchy. Hence, it is essentially a tree data structure.
For example op1 with name “name1/name2” is a child of op2 with name “name1”.
<b>Graph:</b> The representation organizes ops based on op inputs. Hence it is
a graph structure. The graph is a “directed acyclic graph” (hopefully), with
direction from “output to input”. The direction is design this way so that users
can trace from “result” to its “sources”.
### Command line options
tfprofs major goals are to measure system performance and quicly analyze
model architectures. Hence, its commands and options should allow users to achieve
these 2 goals easily.
<b>graph:</b> It is expected that users will mostly use graph representation to
debug system performance. Hence, tfprof supports graph command, which pulls the
graph in-memory representation described above.
<b>scope:</b> It is expected that some users might want to explore their model
statistics using the name scope information they defined in the Python codes.
Hence, tfprof supports “scope” command, which pulls the tree in-memory
representation.
<b>set:</b> It is used to store the options so that user doesnt need to
re-type the same option again and again in the follow up command line. Note that
tfprof has traditional terminals history and auto-complete support.
<b>help:</b> print help information.
<b>Options:</b> Run “tfprof help” to get detailed explanations.
```python
"-max_depth",
"-min_bytes",
"-min_micros",
"-min_params",
"-min_float_ops",
"-order_by",
"-account_type_regexes",
"-start_name_regexes",
"-trim_name_regexes",
"-show_name_regexes",
"-hide_name_regexes",
"-account_displayed_op_only",
"-select",
"-viz", # Only supported for graph command.
"-dump_to_file",
```
A key design is that stats are aggregated from descendants up to ancestors.
`-account_type_regexes` is used to decide which ops stat is accounted. It makes
decision based on op type. Usually set it to `.*` if no extra type information
is added to the ops using OpLog. Intuitively, only accounted ops are displayed.
`-min/max` and `-show/hide/trim/start` options are only used the optionally
displayed or hide ops based on ops name and stats. However, they dont prevent
tfprof from accounting stats of hidden ops. Hence, the stat of a op can be
aggregated by its parent even if it is hidden. `-account_displayed_op_only` is
an option to break this rule. When it is set, only displayed ops are accounted.
Regexes are all comma-separated, for example `-show_name_regexes`
`regex1.*,regex2.*`. It is designed this way because it is convenient and comma
is not expected to show up in op names.
`-order_by` is used to order displayed ops. Displayed ops at the same hierarchy
(notice the indent printed) are sorted according to order_by.
## Future Work
* Load SummaryWriter event logs so that it can show the latest summary value.
* Better sorting and aggregation of outputs. Easier comprehension.
* Currently, shape information is based on `graph.pbtxt`. When the shape
information is incomplete, tfprof ignores it. See if it can use `RunMetadata`
and `Checkpoint` to complete shape information.

View File

@ -0,0 +1,31 @@
package(
default_visibility = ["//visibility:public"],
)
licenses(["notice"]) # Apache 2.0
py_library(
name = "tfprof_logger",
srcs = ["tfprof_logger.py"],
srcs_version = "PY2AND3",
deps = [
"//tensorflow:tensorflow_py",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_py",
"//tensorflow/python:framework_for_generated_wrappers",
],
)
# -----------------------------------------------------------------------------
# Google-internal targets. These must be at the end for syncrepo.
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)

View File

@ -0,0 +1,114 @@
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Logging tensorflow::tfprof::OpLog.
OpLog is used to add extra model information for offline analysis by tfprof.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tensorflow as tf
from tensorflow.contrib.tfprof.python.tools.tfprof import tfprof_log_pb2
from tensorflow.python.framework import ops
TRAINABLE_VARIABLES = '_trainable_variables'
REGISTERED_FLOP_STATS = 'flops'
def _get_logged_ops(graph):
"""Extract trainable model parameters and FLOPs for ops from a Graph.
Args:
graph: tf.Graph.
Returns:
logged_ops: dict mapping from op_name to OpLogEntry.
"""
logged_ops = {}
graph_def = graph.as_graph_def()
for node in graph_def.node:
try:
stats = ops.get_stats_for_node_def(graph, node, REGISTERED_FLOP_STATS)
except ValueError:
# Catch Exception When shape is incomplete. Skip it.
stats = None
if not stats or not stats.value:
continue
if node.name not in logged_ops:
entry = tfprof_log_pb2.OpLogEntry()
entry.name = node.name
entry.float_ops = stats.value
logged_ops[entry.name] = entry
for v in graph.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
if v.op.name not in logged_ops:
entry = tfprof_log_pb2.OpLogEntry()
entry.name = v.op.name
entry.types.append(TRAINABLE_VARIABLES)
logged_ops[entry.name] = entry
else:
logged_ops[v.op.name].types.append(TRAINABLE_VARIABLES)
return logged_ops
def _merge_default_with_oplog(graph, op_log=None):
"""Merge the tfprof default extra info with caller's op_log.
Args:
graph: tf.Graph.
op_log: OpLog proto.
Returns:
tmp_op_log: Merged OpLog proto.
"""
tmp_op_log = tfprof_log_pb2.OpLog()
logged_ops = _get_logged_ops(graph)
if not op_log:
tmp_op_log.log_entries.extend(logged_ops.values())
else:
all_ops = dict()
for entry in op_log.log_entries:
all_ops[entry.name] = entry
for op_name, entry in logged_ops.iteritems():
if op_name in all_ops:
all_ops[op_name].types.extend(entry.types)
if entry.float_ops > 0 and all_ops[op_name].float_ops == 0:
all_ops[op_name].float_ops = entry.float_ops
else:
all_ops[op_name] = entry
tmp_op_log.log_entries.extend(all_ops.values())
return tmp_op_log
def write_op_log(graph, log_dir, op_log=None):
"""Log provided 'op_log', and add additional model information below.
The API also assigns ops in tf.trainable_variables() an op type called
'_trainable_variables'.
The API also logs 'flops' statistics for ops with op.RegisterStatistics()
defined.
Args:
graph: tf.Graph.
log_dir: directory to write the log file.
op_log: OpLog proto.
"""
op_log = _merge_default_with_oplog(graph, op_log)
with tf.gfile.Open(os.path.join(log_dir, 'tfprof_log'), 'w') as log:
log.write(op_log.SerializeToString())

View File

@ -0,0 +1,52 @@
package(
default_visibility = ["//visibility:public"],
)
licenses(["notice"]) # Apache 2.0
# -----------------------------------------------------------------------------
# Google-internal targets. These must be at the end for syncrepo.
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)
cc_binary(
name = "tfprof",
srcs = ["tfprof_main.cc"],
deps = [
":protos_all_cc",
"//tensorflow/c:c_api",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof/internal:tfprof_options",
"//tensorflow/contrib/tfprof/tools/tfprof/internal:tfprof_stats",
"//tensorflow/contrib/tfprof/tools/tfprof/internal:tfprof_utils",
"//tensorflow/core:framework_headers_lib",
"//tensorflow/core:framework_internal",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
"@linenoise//:linenoise",
],
)
load("//tensorflow/core:platform/default/build_config.bzl", "tf_proto_library")
tf_proto_library(
name = "protos_all",
srcs = glob(
["**/*.proto"],
),
cc_api_version = 2,
cc_libs = ["//tensorflow/core:protos_all_cc"],
go_api_version = 2,
java_api_version = 2,
visibility = ["//visibility:public"],
)

View File

@ -0,0 +1,227 @@
package(
default_visibility = ["//tensorflow:__subpackages__"],
)
licenses(["notice"]) # Apache 2.0
load("//tensorflow:tensorflow.bzl", "tf_cc_test")
cc_library(
name = "tfprof_stats",
srcs = ["tfprof_stats.cc"],
hdrs = ["tfprof_stats.h"],
deps = [
":tfprof_graph",
":tfprof_node",
":tfprof_options",
":tfprof_scope",
":tfprof_show",
":tfprof_utils",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
cc_library(
name = "tfprof_node",
srcs = ["tfprof_node.cc"],
hdrs = ["tfprof_node.h"],
deps = [
":tfprof_options",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
cc_library(
name = "tfprof_scope",
srcs = ["tfprof_scope.cc"],
hdrs = ["tfprof_scope.h"],
deps = [
":tfprof_constants",
":tfprof_node",
":tfprof_options",
":tfprof_show",
":tfprof_tensor",
":tfprof_utils",
"//tensorflow/c:c_api",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
cc_library(
name = "tfprof_graph",
srcs = ["tfprof_graph.cc"],
hdrs = ["tfprof_graph.h"],
deps = [
":tfprof_constants",
":tfprof_node",
":tfprof_options",
":tfprof_show",
":tfprof_tensor",
":tfprof_utils",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
cc_library(
name = "tfprof_show",
srcs = ["tfprof_show.cc"],
hdrs = ["tfprof_show.h"],
deps = [
":tfprof_constants",
":tfprof_node",
":tfprof_options",
":tfprof_tensor",
":tfprof_utils",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
tf_cc_test(
name = "tfprof_show_test",
srcs = ["tfprof_show_test.cc"],
data = [
"testdata/ckpt",
"testdata/graph.pbtxt",
"testdata/run_meta",
"testdata/tfprof_log",
],
deps = [
":tfprof_constants",
":tfprof_options",
":tfprof_stats",
":tfprof_utils",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core:testlib",
],
)
cc_library(
name = "tfprof_utils",
srcs = ["tfprof_utils.cc"],
hdrs = ["tfprof_utils.h"],
deps = [
":tfprof_options",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
cc_library(
name = "tfprof_options",
srcs = ["tfprof_options.cc"],
hdrs = ["tfprof_options.h"],
deps = [
"//tensorflow/core:framework_headers_lib",
"//tensorflow/core:lib",
],
)
cc_library(
name = "print_model_analysis",
srcs = ["print_model_analysis.cc"],
hdrs = ["print_model_analysis.h"],
deps = [
":tfprof_options",
":tfprof_stats",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
],
)
tf_cc_test(
name = "tfprof_stats_test",
srcs = ["tfprof_stats_test.cc"],
data = [
"testdata/ckpt",
"testdata/graph.pbtxt",
"testdata/run_meta",
"testdata/tfprof_log",
],
deps = [
":tfprof_constants",
":tfprof_options",
":tfprof_stats",
":tfprof_utils",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core:testlib",
],
)
cc_library(
name = "tfprof_tensor",
srcs = ["tfprof_tensor.cc"],
hdrs = ["tfprof_tensor.h"],
deps = [
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:framework",
"//tensorflow/core:lib",
],
)
tf_cc_test(
name = "tfprof_tensor_test",
srcs = ["tfprof_tensor_test.cc"],
data = [
"testdata/ckpt",
"testdata/graph.pbtxt",
],
deps = [
":tfprof_options",
":tfprof_stats",
":tfprof_utils",
"//tensorflow/c:checkpoint_reader",
"//tensorflow/contrib/tfprof/tools/tfprof:protos_all_cc",
"//tensorflow/core:lib",
"//tensorflow/core:protos_all_cc",
"//tensorflow/core:test",
"//tensorflow/core:test_main",
"//tensorflow/core:testlib",
],
)
cc_library(
name = "tfprof_constants",
hdrs = ["tfprof_constants.h"],
deps = [
],
)
# -----------------------------------------------------------------------------
# Google-internal targets. These must be at the end for syncrepo.
filegroup(
name = "all_files",
srcs = glob(
["**/*"],
exclude = [
"**/METADATA",
"**/OWNERS",
],
),
visibility = ["//tensorflow:__subpackages__"],
)

View File

@ -0,0 +1,65 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/print_model_analysis.h"
#include <stdio.h>
#include <memory>
#include <utility>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_stats.h"
namespace tensorflow {
namespace tfprof {
string PrintModelAnalysis(const string* graph, const string* run_meta,
const string* op_log, const string* command,
const Options* options) {
CHECK(graph) << "graph mustn't be null";
CHECK(command) << "command mustn't be null";
CHECK(options) << "options mustn't be null";
std::unique_ptr<GraphDef> graph_ptr(new GraphDef());
graph_ptr->ParseFromString(*graph);
std::unique_ptr<RunMetadata> run_meta_ptr;
if (run_meta) {
run_meta_ptr.reset(new RunMetadata());
run_meta_ptr->ParseFromString(*run_meta);
}
std::unique_ptr<OpLog> op_log_ptr;
if (op_log) {
op_log_ptr.reset(new OpLog());
op_log_ptr->ParseFromString(*op_log);
}
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader;
TFStats tf_stats(std::move(graph_ptr), std::move(run_meta_ptr),
std::move(op_log_ptr), std::move(ckpt_reader));
if (options->dump_to_file.empty()) {
printf("\n=========================Options=============================\n");
printf("%s", options->ToString().c_str());
printf("\n==================Model Analysis Report======================\n");
TFProfNode root(tf_stats.PrintGraph(*command, *options));
printf("\n======================End of Report==========================\n");
fflush(stdout);
return root.SerializeAsString();
}
return tf_stats.PrintGraph(*command, *options).SerializeAsString();
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,45 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_PRINT_MODEL_ANALYSIS_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_PRINT_MODEL_ANALYSIS_H_
#include <string>
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_log.pb.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/protobuf/config.pb.h"
namespace tensorflow {
namespace tfprof {
// ***This API is only for swig.***
//
// Interface defined for Python API swig. Calls the tfprof core API.
// 'graph', 'run_meta', 'op_log' are serialized GraphDef, RunMetadata,
// OpLog strings, respectively.
// 'graph', 'command' and 'options' are required. Others can be nullptr
// if not available.
string PrintModelAnalysis(const string* graph, const string* run_meta,
const string* op_log, const string* command,
const Options* options);
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_PRINT_MODEL_ANALYSIS_H_

Binary file not shown.

View File

@ -0,0 +1,636 @@
node {
name: "zeros"
op: "Const"
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
dim {
size: 2
}
dim {
size: 6
}
dim {
size: 6
}
dim {
size: 3
}
}
float_val: 0.0
}
}
}
}
node {
name: "DW"
op: "Variable"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 3
}
dim {
size: 3
}
dim {
size: 3
}
dim {
size: 6
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "DW/Initializer/random_normal/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 4
}
}
tensor_content: "\003\000\000\000\003\000\000\000\003\000\000\000\006\000\000\000"
}
}
}
}
node {
name: "DW/Initializer/random_normal/mean"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "DW/Initializer/random_normal/stddev"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0010000000475
}
}
}
}
node {
name: "DW/Initializer/random_normal/RandomStandardNormal"
op: "RandomStandardNormal"
input: "DW/Initializer/random_normal/shape"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 87654321
}
}
attr {
key: "seed2"
value {
i: 5
}
}
}
node {
name: "DW/Initializer/random_normal/mul"
op: "Mul"
input: "DW/Initializer/random_normal/RandomStandardNormal"
input: "DW/Initializer/random_normal/stddev"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
}
node {
name: "DW/Initializer/random_normal"
op: "Add"
input: "DW/Initializer/random_normal/mul"
input: "DW/Initializer/random_normal/mean"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
}
node {
name: "DW/Assign"
op: "Assign"
input: "DW"
input: "DW/Initializer/random_normal"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "DW/read"
op: "Identity"
input: "DW"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW"
}
}
}
}
node {
name: "Conv2D"
op: "Conv2D"
input: "zeros"
input: "DW/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
attr {
key: "padding"
value {
s: "SAME"
}
}
attr {
key: "strides"
value {
list {
i: 1
i: 2
i: 2
i: 1
}
}
}
attr {
key: "use_cudnn_on_gpu"
value {
b: true
}
}
}
node {
name: "DW2"
op: "Variable"
attr {
key: "container"
value {
s: ""
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "shape"
value {
shape {
dim {
size: 2
}
dim {
size: 2
}
dim {
size: 6
}
dim {
size: 12
}
}
}
}
attr {
key: "shared_name"
value {
s: ""
}
}
}
node {
name: "DW2/Initializer/random_normal/shape"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
attr {
key: "dtype"
value {
type: DT_INT32
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_INT32
tensor_shape {
dim {
size: 4
}
}
tensor_content: "\002\000\000\000\002\000\000\000\006\000\000\000\014\000\000\000"
}
}
}
}
node {
name: "DW2/Initializer/random_normal/mean"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0
}
}
}
}
node {
name: "DW2/Initializer/random_normal/stddev"
op: "Const"
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "value"
value {
tensor {
dtype: DT_FLOAT
tensor_shape {
}
float_val: 0.0010000000475
}
}
}
}
node {
name: "DW2/Initializer/random_normal/RandomStandardNormal"
op: "RandomStandardNormal"
input: "DW2/Initializer/random_normal/shape"
attr {
key: "T"
value {
type: DT_INT32
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
attr {
key: "dtype"
value {
type: DT_FLOAT
}
}
attr {
key: "seed"
value {
i: 87654321
}
}
attr {
key: "seed2"
value {
i: 15
}
}
}
node {
name: "DW2/Initializer/random_normal/mul"
op: "Mul"
input: "DW2/Initializer/random_normal/RandomStandardNormal"
input: "DW2/Initializer/random_normal/stddev"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
}
node {
name: "DW2/Initializer/random_normal"
op: "Add"
input: "DW2/Initializer/random_normal/mul"
input: "DW2/Initializer/random_normal/mean"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
}
node {
name: "DW2/Assign"
op: "Assign"
input: "DW2"
input: "DW2/Initializer/random_normal"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
attr {
key: "use_locking"
value {
b: true
}
}
attr {
key: "validate_shape"
value {
b: true
}
}
}
node {
name: "DW2/read"
op: "Identity"
input: "DW2"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_class"
value {
list {
s: "loc:@DW2"
}
}
}
}
node {
name: "Conv2D_1"
op: "Conv2D"
input: "Conv2D"
input: "DW2/read"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "data_format"
value {
s: "NHWC"
}
}
attr {
key: "padding"
value {
s: "SAME"
}
}
attr {
key: "strides"
value {
list {
i: 1
i: 2
i: 2
i: 1
}
}
}
attr {
key: "use_cudnn_on_gpu"
value {
b: true
}
}
}
versions {
producer: 13
}

View File

@ -0,0 +1,22 @@
<EFBFBD>
<EFBFBD>
%/job:localhost/replica:0/task:0/cpu:0:
_SOURCEû¡ˆ§·†Ï (2
cpuB_SOURCE = NoOp()H塈§·†Ïa
zeros”¢ˆ§·†Ï (2
cpu:(&"àcpu0€ýèÉöûBzeros = Const()H<>¢ˆ§·†Ï^
DW<10>¢ˆ§·†Ï (2
cpu:(&"ˆcpu0à©€ ìûBDW = Variable()H¢ˆ§·†Ï`
DW2Ÿ¢ˆ§·†Ï (2
cpu:(& "cpu0 Ÿ€àëûBDW2 = Variable()H¢ˆ§·†Ïj
DW/read±¢ˆ§·†Ï (2
cpu:(&"ˆcpu0à©€ ìûBDW/read = Identity(DW)H¥¢ˆ§·†Ïm
DW2/read¸¢ˆ§·†Ï (2
cpu:(& "cpu0 Ÿ€àëûBDW2/read = Identity(DW2)H§¢ˆ§·†Ïs
Conv2D¹¢ˆ§·†Ï P(U2
cpu°:(&"°cpu0à«€àìûBConv2D = Conv2D(zeros, DW/read)H¶¢ˆ§·†Ï{
Conv2D_1’£ˆ§·†Ï (2
cpu:(& "cpu0฀àìûB#Conv2D_1 = Conv2D(Conv2D, DW2/read)HŽ£ˆ§·†Ï6
_SINK³£ˆ§·†Ï (2
cpuB_SINK = NoOp()H­£ˆ§·†Ï

View File

@ -0,0 +1,9 @@
Conv2D_1€$

DW2_trainable_variables

DW_trainable_variables
Conv2DÈ-

View File

@ -0,0 +1,37 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_CONSTANTS_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_CONSTANTS_H_
namespace tensorflow {
namespace tfprof {
// Op name of root of everything. Aggregates all stats.
static const char* const kTFProfRoot = "_TFProfRoot";
// Op type for nodes that doesn't represent a physical node in the
// TensorFlow model. Only exist as a placehold to aggregate children.
// For example, kTFProfRoot belongs to this type.
static const char* const kTFGraphParent = "_TFGraphParent";
static const char* const kTFScopeParent = "_kTFScopeParent";
// Op type for tf.trainable_variables().
static const char* const kTrainableVarType = "_trainable_variables";
// Op type for tensors in the checkpoint file.
static const char* const kCkptVarType = "_checkpoint_variables";
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_CONSTANTS_H_

View File

@ -0,0 +1,222 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_graph.h"
#include <stdio.h>
#include <utility>
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_constants.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_tensor.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/regexp.h"
namespace tensorflow {
namespace tfprof {
GraphNode* TFGraph::CreateParentNode(const string& name) {
node_defs_.push_back(std::unique_ptr<NodeDef>(new NodeDef()));
node_defs_.back()->set_name(name);
node_defs_.back()->set_op(kTFGraphParent);
parent_nodes_[name] =
std::unique_ptr<TFNode>(new TFNode(node_defs_.back().get()));
nodes_map_[name] =
std::unique_ptr<GraphNode>(new GraphNode(parent_nodes_[name].get()));
return nodes_map_[name].get();
}
void TFGraph::AddNode(TFNode* node) {
string name = node->node_def()->name();
nodes_map_[name] = std::unique_ptr<GraphNode>(new GraphNode(node));
}
void TFGraph::Build() {
if (!roots_.empty()) return;
std::set<string> nonroots;
// Filter out the root nodes (node not input of any other node).
for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) {
GraphNode* node = it->second.get();
const std::map<string, TFNode*>& inputs = node->node->inputs();
for (auto inputs_it = inputs.cbegin(); inputs_it != inputs.cend();
inputs_it++) {
nonroots.insert(inputs_it->first);
auto child_it = nodes_map_.find(inputs_it->first);
if (child_it != nodes_map_.end()) {
node->children.push_back(child_it->second.get());
}
}
}
for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) {
if (nonroots.find(it->first) == nonroots.end()) {
roots_.push_back(it->second.get());
}
}
}
const ShowNode* TFGraph::ShowInternal(const Options& opts) {
// Search the nodes to start from.
std::vector<GraphNode*> roots = roots_;
if (opts.start_name_regexes.size() != 1 ||
opts.start_name_regexes[0] != ".*") {
std::set<string> visited;
roots = SearchRoot(roots, opts.start_name_regexes, &visited);
}
GraphNode* root = CreateParentNode(kTFProfRoot);
root->children.assign(roots.begin(), roots.end());
std::map<string, int64> account_visits;
Account({root}, opts, &account_visits);
if (opts.viz) {
printf("Visualizing feature disabled...\n");
}
std::set<string> visits;
return PrintGraph({root}, opts, 1, 0, 0, &visits)[0];
}
std::vector<GraphNode*> TFGraph::SearchRoot(
const std::vector<GraphNode*>& roots, const std::vector<string>& regexes,
std::set<string>* visited) {
std::vector<GraphNode*> res;
if (roots.empty()) {
return res;
}
for (GraphNode* root : roots) {
if (visited->find(root->name()) != visited->end()) continue;
visited->insert(root->name());
// If the parent is a start point, don't search its children.
// Note that its children can still be added as start node through
// another route.
bool match_start_node = false;
for (const string& regex : regexes) {
if (RE2::FullMatch(root->name(), regex)) {
res.push_back(root);
match_start_node = true;
break;
}
}
if (match_start_node) {
continue;
}
std::vector<GraphNode*> nroot =
SearchRoot(root->children, regexes, visited);
res.insert(res.end(), nroot.begin(), nroot.end());
}
return res;
}
std::vector<GraphNode*> TFGraph::PrintGraph(const std::vector<GraphNode*> roots,
const Options& opts, int depth,
int hidden, int last_ident,
std::set<string>* visits) {
std::vector<GraphNode*> show_nodes;
for (GraphNode* node : roots) {
if (visits->find(node->name()) != visits->end()) continue;
visits->insert(node->name());
int nhidden = hidden;
int nlast_ident = last_ident;
bool show = ShouldShow(node, opts, depth);
if (show) {
node->formatted_str.clear();
if (opts.account_displayed_op_only) {
node->ResetTotalStats();
node->AddSelfToTotalStats();
}
nhidden = 0;
nlast_ident = (hidden && opts.select.find(kShown[4]) != opts.select.end()
? last_ident + 4
: last_ident + 2);
} else {
++nhidden;
}
std::vector<GraphNode*> show_cnodes;
if (!ShouldTrim(node, opts.trim_name_regexes)) {
show_cnodes = PrintGraph(node->children, opts, depth + 1, nhidden,
nlast_ident, visits);
}
if (show) {
show_cnodes = SortNodes(show_cnodes, opts);
string children_str;
for (GraphNode* sc : show_cnodes) {
children_str += sc->formatted_str;
node->mutable_proto()->add_children()->MergeFrom(sc->proto());
if (opts.account_displayed_op_only) {
node->AggregateTotalStats(sc);
}
}
if (hidden && opts.select.find(kShown[4]) != opts.select.end()) {
node->formatted_str = strings::Printf(
"%s...hidden %d...\n", string(last_ident, ' ').c_str(), hidden);
node->formatted_str +=
strings::Printf(" %s%s\n", string(last_ident, ' ').c_str(),
node->Format(opts).c_str());
} else {
node->formatted_str =
strings::Printf("%s%s\n", string(last_ident, ' ').c_str(),
node->Format(opts).c_str());
}
if (opts.select.find(kShown[5]) != opts.select.end()) {
std::unique_ptr<TFProfTensor> tfprof_tensor;
if (LookUpCheckPoint(node->name(), &tfprof_tensor)) {
string value_str;
tfprof_tensor->Display(&value_str,
node->mutable_proto()->mutable_tensor_value());
node->formatted_str += value_str;
}
}
node->formatted_str += children_str;
show_nodes.push_back(node);
} else {
show_nodes.insert(show_nodes.end(), show_cnodes.begin(),
show_cnodes.end());
}
}
return show_nodes;
}
void TFGraph::Account(const std::vector<GraphNode*>& roots, const Options& opts,
std::map<string, int64>* visits) {
if (roots.empty()) return;
for (GraphNode* node : roots) {
if (visits->find(node->name()) != visits->end()) continue;
(*visits)[node->name()] = 1;
node->ResetTotalStats();
// Depth-firsth.
Account(node->children, opts, visits);
node->account = ShouldAccount(node, opts);
if (node->account) {
node->AddSelfToTotalStats();
}
// Aggregate its children stats.
for (GraphNode* c : node->children) {
// A node can be visited from multiple parents. Only account once.
// "visits==1" is when the node is visited through depth-first search.
(*visits)[c->name()] += 1;
if ((*visits)[c->name()] > 2) continue;
node->AggregateTotalStats(c);
}
}
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,116 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Build a graph structure based on op inputs/outputs. The graph is a directed
// acyclic graph pointing *from outputs to inputs*.
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_GRAPH_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_GRAPH_H_
#include <deque>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_node.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_show.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/core/errors.h"
namespace tensorflow {
namespace tfprof {
class GraphNode : public ShowNode {
public:
explicit GraphNode(TFNode* node) : ShowNode(node) {
mutable_proto()->set_inputs(node->inputs().size());
mutable_proto()->set_total_inputs(0);
}
void AggregateTotalStats(GraphNode* node) {
ShowNode::AggregateTotalStats(node);
mutable_proto()->set_total_inputs(proto().total_inputs() +
node->proto().total_inputs() + 1);
}
void AddSelfToTotalStats() {
ShowNode::AddSelfToTotalStats();
mutable_proto()->set_total_inputs(proto().total_inputs() +
proto().inputs());
}
void ResetTotalStats() {
ShowNode::ResetTotalStats();
mutable_proto()->set_total_inputs(0);
}
std::vector<GraphNode*> children;
};
// Organize tensorflow ops in a graph structure, pointing from output ops
// to input ops.
class TFGraph : public TFShow {
public:
explicit TFGraph(checkpoint::CheckpointReader* ckpt_reader)
: TFShow(ckpt_reader) {}
~TFGraph() override {}
void AddNode(TFNode* node) override;
void Build() override;
private:
const ShowNode* ShowInternal(const Options& opts) override;
bool ShouldShowIfExtra(ShowNode* node, const Options& opts,
int depth) override {
return true;
}
GraphNode* CreateParentNode(const string& name);
std::vector<GraphNode*> SearchRoot(const std::vector<GraphNode*>& roots,
const std::vector<string>& regexes,
std::set<string>* visited);
std::vector<GraphNode*> PrintGraph(const std::vector<GraphNode*> roots,
const Options& opts, int depth, int hidden,
int last_ident, std::set<string>* visits);
void VisualizeGraph(GraphNode* root, const Options& opts);
std::vector<GraphNode*> GenerateGraphDot(
GraphNode* root, GraphNode* last_shown, const Options& opts, int depth,
int hidden, std::set<string>* declared_nodes,
std::set<string>* declared_edges, TFProfNode* parent);
void Account(const std::vector<GraphNode*>& roots, const Options& opts,
std::map<string, int64>* visits);
std::vector<GraphNode*> roots_;
std::vector<std::unique_ptr<NodeDef>> node_defs_;
std::map<string, std::unique_ptr<TFNode>> parent_nodes_;
std::map<string, std::unique_ptr<GraphNode>> nodes_map_;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_GRAPH_H_

View File

@ -0,0 +1,47 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_node.h"
#include "tensorflow/core/framework/allocation_description.pb.h"
#include "tensorflow/core/framework/tensor_description.pb.h"
namespace tensorflow {
namespace tfprof {
void TFNode::AddStepStat(const string& device, const NodeExecStats* step_stat) {
if (!device.empty()) {
// This might override device from GraphDef.
device_ = device;
}
step_stat_ = step_stat;
op_start_micros_ = step_stat_->all_start_micros();
if (step_stat_->op_end_rel_micros() && step_stat_->op_start_rel_micros()) {
op_exec_micros_ =
step_stat_->op_end_rel_micros() - step_stat_->op_start_rel_micros();
}
all_spent_micros_ = step_stat_->all_end_rel_micros();
for (const auto& output : step_stat_->output()) {
if (output.has_tensor_description() &&
output.tensor_description().has_allocation_description()) {
requested_bytes_ += output.tensor_description()
.allocation_description()
.requested_bytes();
}
}
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,106 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_NODE_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_NODE_H_
#include <map>
#include <set>
#include <string>
#include <vector>
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/core/framework/allocation_description.pb.h"
#include "tensorflow/core/framework/attr_value.pb.h"
#include "tensorflow/core/framework/node_def.pb.h"
#include "tensorflow/core/framework/step_stats.pb.h"
#include "tensorflow/core/framework/tensor_description.pb.h"
#include "tensorflow/core/framework/tensor_shape.pb.h"
#include "tensorflow/core/lib/core/errors.h"
namespace tensorflow {
namespace tfprof {
class TFNode {
public:
TFNode(const NodeDef* node)
: node_(node),
step_stat_(nullptr),
op_start_micros_(0),
op_exec_micros_(0),
all_spent_micros_(0),
requested_bytes_(0),
float_ops_(0) {
if (!node) return;
for (const auto& attr : node->attr()) {
// TODO(xpan): Also consider _output_shapes.
if (attr.first != "shape" || !attr.second.has_shape()) continue;
if (!shape_.empty()) {
fprintf(stderr, "Found duplicated shapes!\n");
continue;
}
std::vector<int64> shape_vec;
for (const auto& d : attr.second.shape().dim()) {
shape_vec.push_back(d.size());
}
update_shape(shape_vec);
}
op_types_.insert(node->op());
device_ = node->device();
}
TFNode() : TFNode(nullptr) {}
void AddInput(TFNode* input) { inputs_[input->node_def()->name()] = input; }
void AddOpType(const string& op_type) { op_types_.insert(op_type); }
void AddStepStat(const string& device, const NodeExecStats* step_stat);
void AddFloatOps(int64 float_ops) { float_ops_ = float_ops; }
const NodeDef* node_def() { return node_; }
const std::map<string, TFNode*>& inputs() { return inputs_; }
int64 op_start_micros() { return op_start_micros_; }
int64 op_exec_micros() { return op_exec_micros_; }
int64 all_spent_micros() { return all_spent_micros_; }
int64 requested_byptes() { return requested_bytes_; }
int64 float_ops() { return float_ops_; }
string device() { return device_; }
const std::set<string>& op_types() { return op_types_; }
const std::vector<int64>& shape() { return shape_; }
void update_shape(const std::vector<int64>& shape) { shape_ = shape; }
private:
std::map<string, TFNode*> inputs_;
const NodeDef* node_;
const NodeExecStats* step_stat_;
std::vector<int64> shape_;
std::set<string> op_types_;
string device_;
int64 op_start_micros_;
int64 op_exec_micros_;
int64 all_spent_micros_;
int64 requested_bytes_;
int64 float_ops_;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_NODE_H_

View File

@ -0,0 +1,57 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
namespace tensorflow {
namespace tfprof {
string Options::ToString() const {
const string s = strings::Printf(
"%-28s%d\n"
"%-28s%lld\n"
"%-28s%lld\n"
"%-28s%lld\n"
"%-28s%lld\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n"
"%-28s%s\n",
kOptions[0], max_depth, kOptions[1], min_bytes, kOptions[2], min_micros,
kOptions[3], min_params, kOptions[4], min_float_ops, kOptions[5],
str_util::Join(device_regexes, ",").c_str(), kOptions[6],
order_by.c_str(), kOptions[7],
str_util::Join(account_type_regexes, ",").c_str(), kOptions[8],
str_util::Join(start_name_regexes, ",").c_str(), kOptions[9],
str_util::Join(trim_name_regexes, ",").c_str(), kOptions[10],
str_util::Join(show_name_regexes, ",").c_str(), kOptions[11],
str_util::Join(hide_name_regexes, ",").c_str(), kOptions[12],
(account_displayed_op_only ? "true" : "false"), kOptions[13],
str_util::Join(select, ",").c_str(), kOptions[14],
(viz ? "true" : "false"), kOptions[15], dump_to_file.c_str());
return s;
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,119 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_OPTIONS_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_OPTIONS_H_
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/str_util.h"
namespace tensorflow {
namespace tfprof {
static const char* const kOptions[] = {
"-max_depth",
"-min_bytes",
"-min_micros",
"-min_params",
"-min_float_ops",
"-device_regexes",
"-order_by",
"-account_type_regexes",
"-start_name_regexes",
"-trim_name_regexes",
"-show_name_regexes",
"-hide_name_regexes",
"-account_displayed_op_only",
"-select",
"-viz",
"-dump_to_file",
};
static const char* const kOrderBy[] = {
"name", "bytes", "micros", "params", "float_ops",
};
// Append Only.
static const char* const kShown[] = {
"bytes", "micros", "params", "float_ops",
"num_hidden_ops", "tensor_value", "device", "op_types",
};
static const char* const kCmds[] = {
"scope", "graph", "set", "help",
};
struct Options {
public:
virtual ~Options() {}
Options(int max_depth, tensorflow::int64 min_bytes,
tensorflow::int64 min_micros, tensorflow::int64 min_params,
tensorflow::int64 min_float_ops,
const std::vector<string>& device_regexes, const string& order_by,
const std::vector<string>& account_type_regexes,
const std::vector<string>& start_name_regexes,
const std::vector<string>& trim_name_regexes,
const std::vector<string>& show_name_regexes,
const std::vector<string>& hide_name_regexes,
bool account_displayed_op_only, const std::vector<string>& select,
bool viz, const string& dump_to_file = "")
: max_depth(max_depth),
min_bytes(min_bytes),
min_micros(min_micros),
min_params(min_params),
min_float_ops(min_float_ops),
device_regexes(device_regexes),
order_by(order_by),
account_type_regexes(account_type_regexes),
start_name_regexes(start_name_regexes),
trim_name_regexes(trim_name_regexes),
show_name_regexes(show_name_regexes),
hide_name_regexes(hide_name_regexes),
account_displayed_op_only(account_displayed_op_only),
select(select.begin(), select.end()),
viz(viz),
dump_to_file(dump_to_file) {}
string ToString() const;
int max_depth;
tensorflow::int64 min_bytes;
tensorflow::int64 min_micros;
tensorflow::int64 min_params;
tensorflow::int64 min_float_ops;
std::vector<string> device_regexes;
string order_by;
std::vector<string> account_type_regexes;
std::vector<string> start_name_regexes;
std::vector<string> trim_name_regexes;
std::vector<string> show_name_regexes;
std::vector<string> hide_name_regexes;
bool account_displayed_op_only;
std::set<string> select;
bool viz;
string dump_to_file;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_OPTIONS_H_

View File

@ -0,0 +1,191 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_scope.h"
#include <stdio.h>
#include <utility>
#include "tensorflow/c/c_api.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_constants.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_tensor.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/regexp.h"
namespace tensorflow {
namespace tfprof {
ScopeNode* TFScope::CreateParentNode(const string& name) {
if (nodes_map_.find(name) != nodes_map_.end()) {
return nodes_map_[name].get();
}
node_defs_.push_back(std::unique_ptr<NodeDef>(new NodeDef()));
node_defs_.back()->set_name(name);
node_defs_.back()->set_op(kTFScopeParent);
parent_nodes_[name] =
std::unique_ptr<TFNode>(new TFNode(node_defs_.back().get()));
nodes_map_[name] =
std::unique_ptr<ScopeNode>(new ScopeNode(parent_nodes_[name].get()));
return nodes_map_[name].get();
}
void TFScope::AddNode(TFNode* node) {
string name = node->node_def()->name();
if (nodes_map_.find(node->node_def()->name()) == nodes_map_.end()) {
nodes_map_[name] = std::unique_ptr<ScopeNode>(new ScopeNode(node));
}
auto last_slash = name.find_last_of("/");
while (last_slash != name.npos) {
name = name.substr(0, last_slash);
if (nodes_map_.find(name) == nodes_map_.end()) {
CHECK(CreateParentNode(name));
}
last_slash = name.find_last_of("/");
}
}
void TFScope::Build() {
if (!roots_.empty()) return;
// Found roots, which are nodes without "/".
for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) {
ScopeNode* node = it->second.get();
auto last_slash = node->name().find_last_of("/");
if (last_slash == string::npos) {
roots_.push_back(node);
} else {
const string prefix = node->name().substr(0, last_slash);
nodes_map_[prefix]->children.push_back(node);
}
}
}
const ShowNode* TFScope::ShowInternal(const Options& opts) {
// Search from roots recursively to find start node, if start_name_regexes
// is specified.
std::vector<ScopeNode*> roots = roots_;
if (opts.start_name_regexes.size() != 1 ||
opts.start_name_regexes[0] != ".*") {
roots = SearchRoot(roots, opts.start_name_regexes);
}
ScopeNode* root = CreateParentNode(kTFProfRoot);
root->children.assign(roots.begin(), roots.end());
Account({root}, opts);
root = PrintScope({root}, opts, 1, 0)[0];
return root;
}
std::vector<ScopeNode*> TFScope::SearchRoot(
std::vector<ScopeNode*> roots, const std::vector<string>& regexes) {
std::vector<ScopeNode*> res;
if (roots.empty()) {
return res;
}
for (ScopeNode* root : roots) {
bool match_start_node = false;
for (const string& regex : regexes) {
if (RE2::FullMatch(root->name(), regex)) {
res.push_back(root);
match_start_node = true;
break;
}
}
if (match_start_node) {
// Found a start node at this branch, no need to continue.
continue;
}
std::vector<ScopeNode*> nroots = SearchRoot(root->children, regexes);
res.insert(res.end(), nroots.begin(), nroots.end());
}
return res;
}
std::vector<ScopeNode*> TFScope::PrintScope(const std::vector<ScopeNode*> roots,
const Options& opts, int depth,
int last_ident) {
std::vector<ScopeNode*> show_nodes;
for (ScopeNode* node : roots) {
int nlast_ident = last_ident;
bool show = ShouldShow(node, opts, depth);
if (show) {
node->formatted_str.clear();
if (opts.account_displayed_op_only) {
node->ResetTotalStats();
node->AddSelfToTotalStats();
}
nlast_ident += 2;
}
std::vector<ScopeNode*> show_cnodes;
if (!ShouldTrim(node, opts.trim_name_regexes)) {
show_cnodes = PrintScope(node->children, opts, depth + 1, nlast_ident);
}
if (show) {
show_cnodes = SortNodes(show_cnodes, opts);
string children_str;
for (ScopeNode* sc : show_cnodes) {
children_str += sc->formatted_str;
node->mutable_proto()->add_children()->MergeFrom(sc->proto());
if (opts.account_displayed_op_only) {
node->AggregateTotalStats(sc);
}
}
node->formatted_str =
strings::Printf("%s%s\n", string(last_ident, ' ').c_str(),
node->Format(opts).c_str());
if (opts.select.find(kShown[5]) != opts.select.end()) {
std::unique_ptr<TFProfTensor> tfprof_tensor;
if (LookUpCheckPoint(node->name(), &tfprof_tensor)) {
string value_str;
tfprof_tensor->Display(&value_str,
node->mutable_proto()->mutable_tensor_value());
node->formatted_str += value_str;
}
}
node->formatted_str += children_str;
show_nodes.push_back(node);
} else {
show_nodes.insert(show_nodes.end(), show_cnodes.begin(),
show_cnodes.end());
}
}
return show_nodes;
}
void TFScope::Account(const std::vector<ScopeNode*>& roots,
const Options& opts) {
if (roots.empty()) return;
for (ScopeNode* node : roots) {
node->ResetTotalStats();
Account(node->children, opts);
node->account = ShouldAccount(node, opts);
if (node->account) {
node->AddSelfToTotalStats();
}
for (ScopeNode* c : node->children) {
node->AggregateTotalStats(c);
}
}
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,88 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Build a tree structure based on the TensorFlow op names.
// For example, 'name1/name2' is a child of 'name1'.
// Stats are aggregated from descendants from ancestors.
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_SCOPE_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_SCOPE_H_
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_node.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_show.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/core/errors.h"
namespace tensorflow {
namespace tfprof {
class ScopeNode : public ShowNode {
public:
explicit ScopeNode(TFNode* node) : ShowNode(node) {}
~ScopeNode() override {}
void AggregateTotalStats(ScopeNode* node) {
ShowNode::AggregateTotalStats(node);
}
void AddSelfToTotalStats() { ShowNode::AddSelfToTotalStats(); }
void ResetTotalStats() { ShowNode::ResetTotalStats(); }
std::vector<ScopeNode*> children;
};
class TFScope : public TFShow {
public:
explicit TFScope(checkpoint::CheckpointReader* ckpt_reader)
: TFShow(ckpt_reader) {}
~TFScope() override {}
void AddNode(TFNode* node) override;
void Build() override;
private:
const ShowNode* ShowInternal(const Options& opts) override;
ScopeNode* CreateParentNode(const string& name);
std::vector<ScopeNode*> SearchRoot(std::vector<ScopeNode*> roots,
const std::vector<string>& regexes);
std::vector<ScopeNode*> PrintScope(const std::vector<ScopeNode*> roots,
const Options& opts, int depth,
int last_ident);
void Account(const std::vector<ScopeNode*>& roots, const Options& opts);
std::vector<ScopeNode*> roots_;
std::vector<std::unique_ptr<NodeDef>> node_defs_;
std::map<string, std::unique_ptr<TFNode>> parent_nodes_;
std::map<string, std::unique_ptr<ScopeNode>> nodes_map_;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_SCOPE_H_

View File

@ -0,0 +1,266 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_show.h"
#include <memory>
#include <set>
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/regexp.h"
namespace tensorflow {
namespace tfprof {
ShowNode::ShowNode(TFNode* node) : node(node), account(true) {
mutable_proto()->set_name(name());
if (!node->device().empty()) {
mutable_proto()->set_device(node->device());
}
mutable_proto()->set_exec_micros(node->op_exec_micros());
mutable_proto()->set_requested_bytes(node->requested_byptes());
mutable_proto()->set_float_ops(node->float_ops());
if (!node->shape().empty()) {
int64 params = 1;
bool complete_shape = true;
for (int64 d : node->shape()) {
// Sometimes parameters could be <0 when a dim is unknown.
if (d < 0) {
complete_shape = false;
break;
}
params *= d;
}
if (complete_shape) {
mutable_proto()->set_parameters(proto_.parameters() + params);
} else {
fprintf(stderr, "Incomplete shape.");
}
}
}
string ShowNode::Format(const Options& opts) {
if (opts.select.empty()) {
return name();
}
return strings::Printf("%s (%s)", name().c_str(), FormatMeta(opts).c_str());
}
string ShowNode::FormatMeta(const Options& opts) {
std::vector<string> info;
if (opts.select.find(kShown[2]) != opts.select.end()) {
const string shape = FormatShapes(node->shape());
if (!shape.empty()) {
info.push_back(shape);
}
string params = FormatNumber(proto().total_parameters()) + " params";
if (account) {
params = FormatNumber(proto().parameters()) + "/" + params;
} else {
params = "--/" + params;
}
info.push_back(params);
}
if (opts.select.find(kShown[3]) != opts.select.end()) {
string fops = FormatNumber(proto().total_float_ops()) + " flops";
if (account) {
fops = FormatNumber(proto().float_ops()) + "/" + fops;
} else {
fops = "--/" + fops;
}
info.push_back(fops);
}
if (opts.select.find(kShown[0]) != opts.select.end()) {
string memory = FormatMemory(proto().total_requested_bytes());
if (account) {
memory = FormatMemory(proto().requested_bytes()) + "/" + memory;
} else {
memory = "--/" + memory;
}
info.push_back(memory);
}
if (opts.select.find(kShown[1]) != opts.select.end()) {
string time = FormatTime(proto().total_exec_micros());
if (account) {
time = FormatTime(proto().exec_micros()) + "/" + time;
} else {
time = "--/" + time;
}
info.push_back(time);
}
if (opts.select.find(kShown[6]) != opts.select.end()) {
if (!proto().device().empty()) {
info.push_back(proto().device());
}
}
if (opts.select.find(kShown[7]) != opts.select.end()) {
std::set<string> op_types = node->op_types();
// Device is considered a type.
if (!proto().device().empty()) {
op_types.insert(proto().device());
}
info.push_back(str_util::Join(op_types, "|"));
}
return str_util::Join(info, ", ");
}
TFProfNode* ShowNode::mutable_proto() { return &proto_; }
const TFProfNode& ShowNode::proto() const { return proto_; }
void ShowNode::AggregateTotalStats(ShowNode* node) {
TFProfNode* node_pb = node->mutable_proto();
mutable_proto()->set_total_exec_micros(proto().total_exec_micros() +
node_pb->total_exec_micros());
mutable_proto()->set_total_requested_bytes(proto().total_requested_bytes() +
node_pb->total_requested_bytes());
mutable_proto()->set_total_parameters(proto().total_parameters() +
node_pb->total_parameters());
mutable_proto()->set_total_float_ops(proto().total_float_ops() +
node_pb->total_float_ops());
}
void ShowNode::AddSelfToTotalStats() {
mutable_proto()->set_total_exec_micros(proto().total_exec_micros() +
proto().exec_micros());
mutable_proto()->set_total_requested_bytes(proto().total_requested_bytes() +
proto().requested_bytes());
mutable_proto()->set_total_parameters(proto().total_parameters() +
proto().parameters());
mutable_proto()->set_total_float_ops(proto().total_float_ops() +
proto().float_ops());
}
void ShowNode::ResetTotalStats() {
mutable_proto()->set_total_exec_micros(0);
mutable_proto()->set_total_requested_bytes(0);
mutable_proto()->set_total_parameters(0);
mutable_proto()->set_total_float_ops(0);
}
const TFProfNode& TFShow::Show(const Options& opts) {
const ShowNode* root = ShowInternal(opts);
if (opts.dump_to_file.empty()) {
printf("%s", root->formatted_str.c_str());
fflush(stdout);
} else {
Status s = WriteStringToFile(Env::Default(), opts.dump_to_file,
root->formatted_str);
if (!s.ok()) {
fprintf(stderr, "%s\n", s.ToString().c_str());
}
}
return root->proto();
}
bool TFShow::LookUpCheckPoint(const string& name,
std::unique_ptr<TFProfTensor>* tensor) {
if (name == kTFProfRoot || !ckpt_reader_ || !tensor) {
return false;
}
std::unique_ptr<Tensor> out_tensor;
TF_Status* status = TF_NewStatus();
ckpt_reader_->GetTensor(name, &out_tensor, status);
if (TF_GetCode(status) != TF_OK) {
fprintf(stderr, "%s\n", TF_Message(status));
TF_DeleteStatus(status);
return false;
}
tensor->reset(new TFProfTensor(std::move(out_tensor)));
TF_DeleteStatus(status);
return true;
}
bool TFShow::ShouldShow(ShowNode* node, const Options& opts, int depth) {
// Always show kTFProfRoot.
if (node->name() == kTFProfRoot) return true;
if (!node->account) return false;
if (node->proto().requested_bytes() < opts.min_bytes ||
node->proto().exec_micros() < opts.min_micros ||
node->proto().parameters() < opts.min_params ||
node->proto().float_ops() < opts.min_float_ops ||
depth > opts.max_depth || !ShouldShowIfExtra(node, opts, depth)) {
return false;
}
bool show = false;
if (opts.device_regexes.size() == 1 && opts.device_regexes[0] == ".*") {
show = true;
} else {
for (const string& regex : opts.device_regexes) {
if (RE2::FullMatch(node->proto().device(), regex)) {
show = true;
break;
}
}
}
// Don't show if device_regexes don't cover it.
if (!show) return false;
show = false;
if (opts.show_name_regexes.size() == 1 && opts.show_name_regexes[0] == ".*") {
show = true;
} else {
for (const string& regex : opts.show_name_regexes) {
if (RE2::FullMatch(node->name(), regex)) {
show = true;
break;
}
}
}
// Don't show if show_name_regexes don't cover it.
if (!show) return false;
// Don't show if hide_name_regexes cover it.
for (const string& regex : opts.hide_name_regexes) {
if (RE2::FullMatch(node->name(), regex)) return false;
}
return true;
}
bool TFShow::ShouldTrim(ShowNode* node, const std::vector<string>& regexes) {
for (const string& regex : regexes) {
if (RE2::FullMatch(node->name(), regex)) {
return true;
}
}
return false;
}
bool TFShow::ShouldAccount(ShowNode* node, const Options& opts) {
if (opts.account_type_regexes.size() == 1 &&
opts.account_type_regexes[0] == ".*") {
return true;
}
for (const string& regex : opts.account_type_regexes) {
for (const string& type : node->node->op_types()) {
if (RE2::FullMatch(type, regex)) {
return true;
}
}
if (RE2::FullMatch(node->proto().device(), regex)) {
return true;
}
}
return false;
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,127 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Parent class and utilities for tfprof_graph and tfprof_scope.
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_SHOW_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_SHOW_H_
#include <algorithm>
#include <string>
#include <vector>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_constants.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_node.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_tensor.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
namespace tensorflow {
namespace tfprof {
class ShowNode {
public:
explicit ShowNode(TFNode* node);
virtual ~ShowNode() {}
const string& name() const { return node->node_def()->name(); }
TFProfNode* mutable_proto();
const TFProfNode& proto() const;
string Format(const Options& opts);
string FormatMeta(const Options& opts);
TFNode* node;
bool account;
string formatted_str;
protected:
void AggregateTotalStats(ShowNode* node);
void AddSelfToTotalStats();
void ResetTotalStats();
TFProfNode proto_;
};
class TFShow {
public:
explicit TFShow(checkpoint::CheckpointReader* ckpt_reader)
: ckpt_reader_(ckpt_reader) {}
virtual ~TFShow() {}
virtual void AddNode(TFNode* node) = 0;
virtual void Build() = 0;
const TFProfNode& Show(const Options& opts);
protected:
virtual const ShowNode* ShowInternal(const Options& opts) = 0;
bool LookUpCheckPoint(const string& name,
std::unique_ptr<TFProfTensor>* tensor);
// Overridden by subclass if extra requirements need to be met.
virtual bool ShouldShowIfExtra(ShowNode* node, const Options& opts,
int depth) {
return true;
}
bool ShouldShow(ShowNode* node, const Options& opts, int depth);
bool ShouldTrim(ShowNode* node, const std::vector<string>& regexes);
bool ShouldAccount(ShowNode* node, const Options& opts);
template <typename T>
std::vector<T*> SortNodes(const std::vector<T*>& nodes, const Options& opts) {
if (opts.order_by.empty() || nodes.empty()) {
return nodes;
}
std::vector<T*> sorted_nodes = nodes;
std::sort(sorted_nodes.begin(), sorted_nodes.end(), [&opts](const T* n1,
const T* n2) {
if (n1->name() == kTFProfRoot) return true;
if (n2->name() == kTFProfRoot) return false;
bool name_cmp = n1->name() < n2->name();
if (opts.order_by == kOrderBy[0]) {
return name_cmp;
} else if (opts.order_by == kOrderBy[1]) {
return n1->proto().total_requested_bytes() >
n2->proto().total_requested_bytes();
} else if (opts.order_by == kOrderBy[2]) {
return n1->proto().total_exec_micros() >
n2->proto().total_exec_micros();
} else if (opts.order_by == kOrderBy[3]) {
return n1->proto().total_parameters() > n2->proto().total_parameters();
} else if (opts.order_by == kOrderBy[4]) {
return n1->proto().total_float_ops() > n2->proto().total_float_ops();
}
return name_cmp;
});
return sorted_nodes;
}
checkpoint::CheckpointReader* ckpt_reader_;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_SHOW_H_

View File

@ -0,0 +1,92 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_stats.h"
#include <utility>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_constants.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_log.pb.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/protobuf/config.pb.h"
namespace tensorflow {
namespace tfprof {
class TFProfShowTest : public ::testing::Test {
protected:
TFProfShowTest() {
string graph_path = io::JoinPath(
testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/graph.pbtxt");
std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef());
TF_CHECK_OK(ReadGraphDefText(Env::Default(), graph_path, graph_pb.get()));
std::unique_ptr<tensorflow::RunMetadata> run_meta_pb(
new tensorflow::RunMetadata());
string run_meta_path =
io::JoinPath(testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/run_meta");
TF_CHECK_OK(
ReadBinaryProto(Env::Default(), run_meta_path, run_meta_pb.get()));
std::unique_ptr<OpLog> op_log_pb(new OpLog());
string op_log_path = io::JoinPath(
testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/tfprof_log");
TF_CHECK_OK(ReadBinaryProto(Env::Default(), op_log_path, op_log_pb.get()));
string ckpt_path =
io::JoinPath(testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/ckpt");
TF_Status* status = TF_NewStatus();
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader(
new checkpoint::CheckpointReader(ckpt_path, status));
CHECK(TF_GetCode(status) == TF_OK);
TF_DeleteStatus(status);
tf_stats_.reset(new TFStats(std::move(graph_pb), std::move(run_meta_pb),
std::move(op_log_pb), std::move(ckpt_reader)));
}
std::unique_ptr<TFStats> tf_stats_;
};
TEST_F(TFProfShowTest, DumpScopeMode) {
string dump_file = io::JoinPath(testing::TmpDir(), "dump");
Options opts(5, 0, 0, 0, 0, {".*"}, "name",
{"Variable"}, // accout_type_regexes
{".*"}, {""}, {".*"}, {""}, false,
{"params", "bytes", "micros", "float_ops", "num_hidden_ops"},
false, dump_file);
tf_stats_->PrintGraph("scope", opts);
string dump_str;
TF_CHECK_OK(ReadFileToString(Env::Default(), dump_file, &dump_str));
EXPECT_EQ(
"_TFProfRoot (--/450 params, --/0 flops, --/1.80KB, --/0us)\n DW "
"(3x3x3x6, 162/162 params, 0/0 flops, 648B/648B, 0us/0us)\n DW2 "
"(2x2x6x12, 288/288 params, 0/0 flops, 1.15KB/1.15KB, 0us/0us)\n",
dump_str);
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,130 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_stats.h"
#include <stdio.h>
#include <utility>
#include "tensorflow/core/framework/step_stats.pb.h"
namespace tensorflow {
namespace tfprof {
TFStats::TFStats(std::unique_ptr<GraphDef> graph,
std::unique_ptr<RunMetadata> run_meta,
std::unique_ptr<OpLog> op_log,
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader)
: graph_(std::move(graph)),
run_meta_(std::move(run_meta)),
op_log_(std::move(op_log)),
ckpt_reader_(std::move(ckpt_reader)) {
CHECK(graph_) << "Must at least have GraphDef";
printf("Parsing GraphDef...\n");
ParseGraph();
if (run_meta_) {
printf("Parsing RunMetadata...\n");
ParseRunMeta();
}
if (op_log_) {
printf("Parsing OpLog...\n");
ParseOpLog();
}
if (ckpt_reader_) {
printf("Parsing Checkpoint...\n");
for (const auto& v : ckpt_reader_->GetVariableToShapeMap()) {
auto node = nodes_map_.find(v.first);
if (node != nodes_map_.end()) {
node->second.AddOpType("_checkpoint_variables");
}
}
}
printf("Preparing Views...\n");
scope_view_ = std::unique_ptr<TFScope>(new TFScope(ckpt_reader_.get()));
graph_view_ = std::unique_ptr<TFGraph>(new TFGraph(ckpt_reader_.get()));
for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) {
scope_view_->AddNode(&it->second);
graph_view_->AddNode(&it->second);
}
scope_view_->Build();
graph_view_->Build();
}
const TFProfNode& TFStats::PrintGraph(const string& cmd, const Options& opts) {
if (cmd == kCmds[0]) {
return scope_view_->Show(opts);
} else if (cmd == kCmds[1]) {
return graph_view_->Show(opts);
} else {
fprintf(stderr, "Unknown command: %s\n", cmd.c_str());
return empty_node_;
}
}
void TFStats::ParseGraph() {
for (const NodeDef& node : graph_->node()) {
CHECK(nodes_map_.find(node.name()) == nodes_map_.end());
nodes_map_[node.name()] = TFNode(&node);
}
for (auto it = nodes_map_.begin(); it != nodes_map_.end(); it++) {
const NodeDef* node_def = it->second.node_def();
for (string node_input : node_def->input()) {
// input name format can be: "^node:src_output"
auto prefix_pos = node_input.find(":");
if (prefix_pos != node_input.npos) {
node_input.substr(0, prefix_pos);
}
if (node_input.substr(0, 1) == "^") {
node_input = node_input.substr(1);
}
auto input_node = nodes_map_.find(node_input);
if (input_node == nodes_map_.end()) {
continue;
}
it->second.AddInput(&input_node->second);
}
}
}
void TFStats::ParseOpLog() {
for (const OpLogEntry& entry : op_log_->log_entries()) {
auto node = nodes_map_.find(entry.name());
if (node == nodes_map_.end()) continue;
for (const string& type : entry.types()) {
node->second.AddOpType(type);
}
if (entry.float_ops()) {
node->second.AddFloatOps(entry.float_ops());
}
}
}
void TFStats::ParseRunMeta() {
if (!run_meta_->has_step_stats()) return;
for (const auto& dev_stat : run_meta_->step_stats().dev_stats()) {
for (const auto& node_stat : dev_stat.node_stats()) {
auto node = nodes_map_.find(node_stat.node_name());
if (node == nodes_map_.end()) {
continue;
}
node->second.AddStepStat(dev_stat.device(), &node_stat);
}
}
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,82 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Core API of tfprof.
// 1. Load protos generated from a tensorflow model.
// 2. Build in-memory representations of the tensorflow model, annotate the
// representation with various stats, such as params,times,memory,etc.
// 3. Accept command and options to selectively aggregate stats for analysis
// and print out the results.
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_STATS_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_STATS_H_
#include <map>
#include <memory>
#include <set>
#include <string>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_graph.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_node.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_scope.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_show.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_log.pb.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/attr_value.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/step_stats.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/protobuf/config.pb.h"
namespace tensorflow {
namespace tfprof {
class TFStats {
public:
TFStats(std::unique_ptr<GraphDef> graph,
std::unique_ptr<RunMetadata> run_meta, std::unique_ptr<OpLog> op_log,
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader);
~TFStats() {}
// Prints the results to stdout. Also returns the printed output in
// a proto.
const TFProfNode& PrintGraph(const string& cmd, const Options& opts);
private:
void ParseGraph();
void ParseOpLog();
void ParseRunMeta();
std::unique_ptr<TFScope> scope_view_;
std::unique_ptr<TFGraph> graph_view_;
std::unique_ptr<GraphDef> graph_;
std::unique_ptr<RunMetadata> run_meta_;
std::unique_ptr<OpLog> op_log_;
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader_;
// Store TFNode instead of TFNode* to avoid large number of dynamic alloc.
std::map<string, TFNode> nodes_map_;
TFProfNode empty_node_;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_STATS_H_

View File

@ -0,0 +1,194 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_stats.h"
#include <utility>
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_constants.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_log.pb.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/protobuf.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/protobuf/config.pb.h"
namespace tensorflow {
namespace tfprof {
class TFProfStatsTest : public ::testing::Test {
protected:
TFProfStatsTest() {
string graph_path = io::JoinPath(
testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/graph.pbtxt");
std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef());
TF_CHECK_OK(ReadGraphDefText(Env::Default(), graph_path, graph_pb.get()));
std::unique_ptr<tensorflow::RunMetadata> run_meta_pb(
new tensorflow::RunMetadata());
string run_meta_path =
io::JoinPath(testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/run_meta");
TF_CHECK_OK(
ReadBinaryProto(Env::Default(), run_meta_path, run_meta_pb.get()));
std::unique_ptr<OpLog> op_log_pb(new OpLog());
string op_log_path = io::JoinPath(
testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/tfprof_log");
TF_CHECK_OK(ReadBinaryProto(Env::Default(), op_log_path, op_log_pb.get()));
string ckpt_path =
io::JoinPath(testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/ckpt");
TF_Status* status = TF_NewStatus();
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader(
new checkpoint::CheckpointReader(ckpt_path, status));
CHECK(TF_GetCode(status) == TF_OK);
TF_DeleteStatus(status);
tf_stats_.reset(new TFStats(std::move(graph_pb), std::move(run_meta_pb),
std::move(op_log_pb), std::move(ckpt_reader)));
}
std::unique_ptr<TFStats> tf_stats_;
};
TEST_F(TFProfStatsTest, CustomOpType) {
Options opts(3, 0, 0, 0, 0, {".*"}, "name",
{kTrainableVarType}, // accout_type_regexes
{".*"}, {""}, {".*"}, {""}, false,
{"params", "bytes", "micros", "float_ops", "num_hidden_ops"},
false);
const TFProfNode& root = tf_stats_->PrintGraph("scope", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: "
"0\ntotal_exec_micros: 0\ntotal_requested_bytes: 1800\ntotal_parameters: "
"450\nchildren {\n name: \"DW\"\n exec_micros: 0\n requested_bytes: "
"648\n parameters: 162\n total_exec_micros: 0\n "
"total_requested_bytes: 648\n total_parameters: 162\n device: "
"\"/job:localhost/replica:0/task:0/cpu:0\"\n float_ops: 0\n "
"total_float_ops: 0\n}\nchildren {\n name: \"DW2\"\n exec_micros: 0\n "
"requested_bytes: 1152\n parameters: 288\n total_exec_micros: 0\n "
"total_requested_bytes: 1152\n total_parameters: 288\n device: "
"\"/job:localhost/replica:0/task:0/cpu:0\"\n float_ops: 0\n "
"total_float_ops: 0\n}\nfloat_ops: 0\ntotal_float_ops: 0\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
TEST_F(TFProfStatsTest, CheckPointOpType) {
Options opts(
3, 0, 0, 0, 0, {".*"}, "name", {kCkptVarType}, // accout_type_regexes
{".*"}, {""}, {".*"}, {""}, false,
{"params", "bytes", "micros", "float_ops", "num_hidden_ops"}, false);
const TFProfNode& root = tf_stats_->PrintGraph("scope", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: "
"0\ntotal_exec_micros: 0\ntotal_requested_bytes: 1800\ntotal_parameters: "
"450\nchildren {\n name: \"DW\"\n exec_micros: 0\n requested_bytes: "
"648\n parameters: 162\n total_exec_micros: 0\n "
"total_requested_bytes: 648\n total_parameters: 162\n device: "
"\"/job:localhost/replica:0/task:0/cpu:0\"\n float_ops: 0\n "
"total_float_ops: 0\n}\nchildren {\n name: \"DW2\"\n exec_micros: 0\n "
"requested_bytes: 1152\n parameters: 288\n total_exec_micros: 0\n "
"total_requested_bytes: 1152\n total_parameters: 288\n device: "
"\"/job:localhost/replica:0/task:0/cpu:0\"\n float_ops: 0\n "
"total_float_ops: 0\n}\nfloat_ops: 0\ntotal_float_ops: 0\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
TEST_F(TFProfStatsTest, TestGraph) {
Options opts(100, 0, 10000, 0, 0, {".*"}, "name", {".*"},
{"cost.*"}, // start_name_regexes
{""}, {".*"}, {""}, false,
{"params", "bytes", "micros", "float_ops", "num_hidden_ops"},
false);
const TFProfNode& root = tf_stats_->PrintGraph("graph", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: 0\ninputs: "
"0\ntotal_exec_micros: 0\ntotal_requested_bytes: 0\ntotal_parameters: "
"0\ntotal_inputs: 0\nfloat_ops: 0\ntotal_float_ops: 0\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
TEST_F(TFProfStatsTest, TestFloatOps) {
Options opts(10, 0, 0, 0, 1, {".*"}, "name", {".*"}, {".*"}, {""}, {".*"},
{""}, false, {"float_ops"}, false);
const TFProfNode& root = tf_stats_->PrintGraph("scope", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: "
"0\ntotal_exec_micros: 11\ntotal_requested_bytes: "
"5280\ntotal_parameters: 450\nchildren {\n name: \"Conv2D\"\n "
"exec_micros: 0\n requested_bytes: 432\n total_exec_micros: 0\n "
"total_requested_bytes: 432\n total_parameters: 0\n device: "
"\"/job:localhost/replica:0/task:0/cpu:0\"\n float_ops: 5832\n "
"total_float_ops: 5832\n}\nchildren {\n name: \"Conv2D_1\"\n "
"exec_micros: 10\n requested_bytes: 384\n total_exec_micros: 10\n "
"total_requested_bytes: 384\n total_parameters: 0\n device: "
"\"/job:localhost/replica:0/task:0/cpu:0\"\n float_ops: 4608\n "
"total_float_ops: 4608\n}\nfloat_ops: 0\ntotal_float_ops: 10440\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
TEST_F(TFProfStatsTest, TestAccountShownNameOnly) {
Options opts(100, 0, 0, 0, 0, {".*"}, "name", {".*"}, {".*"}, {""},
{"unit_2_1.*DW"}, // show_name_regexes.
{""}, true, // account_displayed_op_only.
{"params"}, false);
const TFProfNode& root = tf_stats_->PrintGraph("scope", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: "
"0\ntotal_exec_micros: 0\ntotal_requested_bytes: 0\ntotal_parameters: "
"0\nfloat_ops: 0\ntotal_float_ops: 0\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
TEST_F(TFProfStatsTest, TestShowTensorValue) {
Options opts(10, 0, 0, 0, 0, {".*"}, "name", {".*"}, {".*"}, {""},
{"unit_1_0.*gamma"}, {""}, false,
{"tensor_value"}, // Show tensor value from checkpoint.
false);
const TFProfNode& root = tf_stats_->PrintGraph("scope", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: "
"0\ntotal_exec_micros: 11\ntotal_requested_bytes: "
"5280\ntotal_parameters: 450\nfloat_ops: 0\ntotal_float_ops: 10440\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,78 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_tensor.h"
namespace tensorflow {
namespace tfprof {
void TFProfTensor::Display(string* formatted_str,
TFProfTensorProto* tfprof_tensor_pb) {
if (formatted_str) {
if (formatted_str_.length() >= kTFProfTenosrMaxDisplayLen) {
*formatted_str =
strings::StrCat(formatted_str_, "...omitted from display\n\n");
} else {
*formatted_str = formatted_str_;
}
}
if (tfprof_tensor_pb) {
tfprof_tensor_pb->MergeFrom(tfprof_tensor_pb_);
}
}
void TFProfTensor::Build() {
tfprof_tensor_pb_.set_dtype(tensor_->dtype());
switch (tensor_->dtype()) {
// Double for all floats.
case DataType::DT_FLOAT:
case DataType::DT_DOUBLE: {
std::vector<double> values_vec;
if (tensor_->dtype() == DataType::DT_FLOAT) {
GetValueVec<float, double>(&values_vec);
} else if (tensor_->dtype() == DataType::DT_DOUBLE) {
GetValueVec<double, double>(&values_vec);
}
BuildOutput<double>(0, 0, values_vec, &tfprof_tensor_pb_);
break;
}
// Int64 for all integers.
case DataType::DT_INT32:
case DataType::DT_INT64: {
std::vector<int64> values_vec;
if (tensor_->dtype() == DataType::DT_INT32) {
GetValueVec<int32, int64>(&values_vec);
} else if (tensor_->dtype() == DataType::DT_INT64) {
GetValueVec<int64, int64>(&values_vec);
}
BuildOutput<int64>(0, 0, values_vec, &tfprof_tensor_pb_);
break;
}
case DataType::DT_STRING: {
// Not supported by TensorFlow.
std::vector<string> values_vec;
GetValueVec<string, string>(&values_vec);
BuildOutput<string>(0, 0, values_vec, &tfprof_tensor_pb_);
break;
}
default: {
fprintf(stderr, "Not Supported type %d\n", tensor_->dtype());
break;
}
}
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,120 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// TFProf representation of a Tensor's value.
// 1. Multi-dimension tensor is flattened in row major, and stored in proto.
// 2. integer are up-casted to int64. floats are up-casted to double. string
// is not supported by TensorFlow CheckPointReader library, though it is
// supported in current code.
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_TENSOR_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_TENSOR_H_
#include <typeinfo>
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
namespace tensorflow {
namespace tfprof {
class TFProfTensor {
public:
explicit TFProfTensor(std::unique_ptr<Tensor> tensor)
: tensor_(std::move(tensor)) {
Build();
}
// If pointers are provided, they are filled by the method.
void Display(string* formatted_str, TFProfTensorProto* tfprof_tensor_pb);
private:
// Max length of tensor value displayed to CLI.
const int64 kTFProfTenosrMaxDisplayLen = 10000;
// Max length after which a latency warning will be printed.
const int64 kTFProfTensorMaxWarnLen = 100000;
void Build();
// It assumes the flatten values are stored in row-major, which is mentioned
// indirectly at various places:
// TODO(xpan): Further verifying it.
template <typename T>
int64 BuildOutput(int64 start, int depth, const std::vector<T>& values,
TFProfTensorProto* dim) {
formatted_str_ += "[";
int64 nstart = start;
for (int i = 0; i < tensor_->dim_size(depth); i++) {
// Last dimension, pull the values.
if (depth == tensor_->dims() - 1) {
std::ostringstream sstream;
sstream << values[nstart];
if (typeid(values[nstart]) == typeid(double)) {
double double_val;
CHECK(strings::safe_strtod(sstream.str().c_str(), &double_val));
dim->add_value_double(double_val);
formatted_str_ += strings::Printf(
"%.2f ", dim->value_double(dim->value_double_size() - 1));
} else if (typeid(values[nstart]) == typeid(int64)) {
int64 int64_val;
CHECK(strings::safe_strto64(sstream.str().c_str(), &int64_val));
dim->add_value_int64(int64_val);
formatted_str_ += strings::Printf(
"%lld ", dim->value_int64(dim->value_int64_size() - 1));
} else if (typeid(values[nstart]) == typeid(string)) {
dim->add_value_str(sstream.str());
formatted_str_ =
strings::StrCat(formatted_str_, "'",
dim->value_str(dim->value_str_size() - 1) + "' ");
} else {
CHECK(false) << "Unsupported type: " << typeid(values[nstart]).name();
}
++nstart;
} else {
// Not-last dimension. Drill deeper.
nstart = BuildOutput<T>(nstart, depth + 1, values, dim);
}
}
if (formatted_str_.length() > kTFProfTenosrMaxDisplayLen) {
formatted_str_ = formatted_str_.substr(0, kTFProfTenosrMaxDisplayLen);
}
formatted_str_ += "],\n";
return nstart;
}
template <typename T, typename U>
void GetValueVec(std::vector<U>* value_vec) {
// TODO(xpan): Address the huge tensor problem.
if (tensor_->NumElements() > kTFProfTensorMaxWarnLen) {
fprintf(stderr, "Showing huge tensor, the tool might halt...\n");
}
auto values = tensor_->flat<T>();
for (int64 i = 0; i < tensor_->NumElements(); i++) {
value_vec->push_back(static_cast<U>(values(i)));
}
}
TFProfTensorProto tfprof_tensor_pb_;
std::unique_ptr<Tensor> tensor_;
string formatted_str_;
};
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_TENSOR_H_

View File

@ -0,0 +1,306 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_stats.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_log.pb.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_output.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/io/path.h"
#include "tensorflow/core/platform/protobuf.h"
#include "tensorflow/core/platform/test.h"
#include "tensorflow/core/protobuf/config.pb.h"
namespace tensorflow {
namespace tfprof {
class TFProfTensorTest : public ::testing::Test {
protected:
TFProfTensorTest() {
string graph_path = io::JoinPath(
testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/graph.pbtxt");
std::unique_ptr<tensorflow::GraphDef> graph_pb(new tensorflow::GraphDef());
TF_CHECK_OK(ReadGraphDefText(Env::Default(), graph_path, graph_pb.get()));
std::unique_ptr<tensorflow::RunMetadata> run_meta_pb;
std::unique_ptr<OpLog> op_log_pb;
string ckpt_path =
io::JoinPath(testing::TensorFlowSrcRoot(),
"contrib/tfprof/tools/tfprof/internal/testdata/ckpt");
TF_Status* status = TF_NewStatus();
std::unique_ptr<checkpoint::CheckpointReader> ckpt_reader(
new checkpoint::CheckpointReader(ckpt_path, status));
CHECK(TF_GetCode(status) == TF_OK);
TF_DeleteStatus(status);
tf_stats_.reset(new TFStats(std::move(graph_pb), std::move(run_meta_pb),
std::move(op_log_pb), std::move(ckpt_reader)));
}
std::unique_ptr<TFStats> tf_stats_;
};
TEST_F(TFProfTensorTest, Basics) {
Options opts(3, 0, 0, 0, 0, {".*"}, "name", {"Variable"}, {".*"}, {""},
{".*"}, {""}, false, {"tensor_value"}, // show the tensor value.
false);
const TFProfNode& root = tf_stats_->PrintGraph("scope", opts);
TFProfNode expected;
CHECK(protobuf::TextFormat::ParseFromString(
"name: \"_TFProfRoot\"\nexec_micros: 0\nrequested_bytes: "
"0\ntotal_exec_micros: 0\ntotal_requested_bytes: 0\ntotal_parameters: "
"450\nchildren {\n name: \"DW\"\n exec_micros: 0\n requested_bytes: "
"0\n parameters: 162\n total_exec_micros: 0\n total_requested_bytes: "
"0\n total_parameters: 162\n float_ops: 0\n total_float_ops: 0\n "
"tensor_value {\n dtype: DT_FLOAT\n value_double: -0.00117808\n "
"value_double: -0.000709941\n value_double: -0.00174816\n "
"value_double: -0.000495372\n value_double: 0.000243039\n "
"value_double: -0.000126313\n value_double: -0.000663929\n "
"value_double: -0.000495198\n value_double: -0.000893934\n "
"value_double: -0.00179659\n value_double: 0.000408874\n "
"value_double: -0.00120166\n value_double: -0.00109484\n "
"value_double: -0.000200362\n value_double: 0.000726721\n "
"value_double: -0.000277568\n value_double: 0.00180584\n "
"value_double: 0.000997271\n value_double: -0.00185987\n "
"value_double: -0.00113401\n value_double: -0.000528852\n "
"value_double: -0.000197412\n value_double: 1.32871e-05\n "
"value_double: -0.000285896\n value_double: -0.000428898\n "
"value_double: -0.000424633\n value_double: 2.15488e-05\n "
"value_double: 0.00149753\n value_double: -0.000884576\n "
"value_double: -0.0013795\n value_double: -0.000650125\n "
"value_double: 0.00191612\n value_double: 4.71838e-05\n "
"value_double: 0.000400201\n value_double: 0.00239555\n "
"value_double: -0.00177706\n value_double: -0.000781899\n "
"value_double: -0.00145247\n value_double: 0.0020025\n "
"value_double: 0.000597419\n value_double: 0.00135456\n "
"value_double: 0.0015876\n value_double: -0.000993568\n "
"value_double: 0.0006509\n value_double: -0.000894533\n "
"value_double: -0.00129322\n value_double: 0.0003859\n "
"value_double: 0.000415186\n value_double: -0.000439212\n "
"value_double: 0.000442138\n value_double: 0.00212353\n "
"value_double: 0.000702953\n value_double: 0.000713424\n "
"value_double: -0.000304877\n value_double: -9.17046e-05\n "
"value_double: -0.000801103\n value_double: 0.000304854\n "
"value_double: -0.00070527\n value_double: -0.00106408\n "
"value_double: -0.000909906\n value_double: -4.49183e-05\n "
"value_double: 0.000104172\n value_double: -0.000438067\n "
"value_double: -0.000317689\n value_double: -0.000769914\n "
"value_double: -0.00157729\n value_double: 0.000220733\n "
"value_double: 0.00107268\n value_double: -0.000186449\n "
"value_double: -0.000807328\n value_double: 0.000456308\n "
"value_double: -0.000593729\n value_double: -0.000954873\n "
"value_double: -0.000268676\n value_double: 9.06328e-05\n "
"value_double: -0.000323473\n value_double: -0.000628768\n "
"value_double: 0.000664985\n value_double: 0.0020999\n "
"value_double: -0.000932228\n value_double: -0.00203203\n "
"value_double: 0.000565405\n value_double: 0.000167899\n "
"value_double: 0.00054897\n value_double: 0.000612407\n "
"value_double: -0.000619301\n value_double: 0.00169361\n "
"value_double: -0.000188057\n value_double: 0.000267652\n "
"value_double: -0.00127341\n value_double: -0.000218836\n "
"value_double: -0.000431722\n value_double: 5.41867e-05\n "
"value_double: 0.000296628\n value_double: 0.000819415\n "
"value_double: -0.000758993\n value_double: -0.000114477\n "
"value_double: 6.29219e-05\n value_double: 0.000726988\n "
"value_double: -0.00135974\n value_double: 2.28447e-05\n "
"value_double: 0.00120547\n value_double: -0.00136907\n "
"value_double: -0.00140188\n value_double: 0.000201145\n "
"value_double: -0.000774109\n value_double: 0.000798465\n "
"value_double: -0.00131861\n value_double: 3.08996e-05\n "
"value_double: -0.000637026\n value_double: 0.00228975\n "
"value_double: -0.000633757\n value_double: -0.00116047\n "
"value_double: 7.66039e-05\n value_double: 2.09167e-06\n "
"value_double: -0.000296448\n value_double: 0.000206795\n "
"value_double: 0.000674405\n value_double: -0.000722742\n "
"value_double: -9.32443e-05\n value_double: -0.00170917\n "
"value_double: -0.000505279\n value_double: 0.000628132\n "
"value_double: -0.00145929\n value_double: 0.00106077\n "
"value_double: -0.000796743\n value_double: 0.000498275\n "
"value_double: -0.0002914\n value_double: -0.00230622\n "
"value_double: -9.42872e-05\n value_double: 0.000200359\n "
"value_double: -0.00305027\n value_double: -0.0016218\n "
"value_double: 0.00137126\n value_double: -0.00215436\n "
"value_double: -0.000743827\n value_double: -0.00090007\n "
"value_double: -0.000762207\n value_double: -0.000149951\n "
"value_double: -0.0013102\n value_double: 0.00165781\n "
"value_double: 0.000343809\n value_double: -0.000826069\n "
"value_double: -4.67404e-05\n value_double: 0.0023931\n "
"value_double: 0.00165338\n value_double: -0.00050529\n "
"value_double: 0.000178771\n value_double: -0.000858287\n "
"value_double: -0.00157031\n value_double: -0.00165846\n "
"value_double: -0.000713672\n value_double: 0.00014357\n "
"value_double: 0.00203632\n value_double: -0.0010973\n "
"value_double: -9.89852e-05\n value_double: 0.000558808\n "
"value_double: 0.00087211\n value_double: 0.000661239\n "
"value_double: 0.000389605\n value_double: 0.00060653\n "
"value_double: -0.000330104\n }\n}\nchildren {\n name: \"DW2\"\n "
"exec_micros: 0\n requested_bytes: 0\n parameters: 288\n "
"total_exec_micros: 0\n total_requested_bytes: 0\n total_parameters: "
"288\n float_ops: 0\n total_float_ops: 0\n tensor_value {\n dtype: "
"DT_FLOAT\n value_double: 0.000704577\n value_double: "
"0.000127421\n value_double: 0.00105952\n value_double: "
"0.000423765\n value_double: -0.00025461\n value_double: "
"-0.000857203\n value_double: 0.000693494\n value_double: "
"0.000282214\n value_double: 0.00106185\n value_double: "
"-0.000836552\n value_double: -0.00116766\n value_double: "
"0.000733674\n value_double: -0.000669601\n value_double: "
"-0.000275175\n value_double: -0.000428215\n value_double: "
"-0.000495715\n value_double: -0.000125887\n value_double: "
"-0.000715204\n value_double: -0.00108936\n value_double: "
"0.000738267\n value_double: 0.000376081\n value_double: "
"0.00191442\n value_double: 0.001423\n value_double: -0.00093811\n "
" value_double: -5.91421e-05\n value_double: -0.000221507\n "
"value_double: -0.000104555\n value_double: -0.00069682\n "
"value_double: -0.000278325\n value_double: -0.00122748\n "
"value_double: -0.00112411\n value_double: -0.000440511\n "
"value_double: -0.000392247\n value_double: -0.000419606\n "
"value_double: -0.00167063\n value_double: -0.000988578\n "
"value_double: -0.00040159\n value_double: 0.00238918\n "
"value_double: -0.000892898\n value_double: -0.000875976\n "
"value_double: 0.00154401\n value_double: -0.000719911\n "
"value_double: 0.000753941\n value_double: -0.000119961\n "
"value_double: -0.000305115\n value_double: 9.97947e-05\n "
"value_double: -0.00128908\n value_double: -0.000584184\n "
"value_double: -0.000734685\n value_double: -0.00146612\n "
"value_double: 0.000670802\n value_double: 0.000924219\n "
"value_double: -0.000154409\n value_double: 0.000198231\n "
"value_double: -0.000340742\n value_double: -0.00159646\n "
"value_double: -1.19382e-05\n value_double: 0.00165203\n "
"value_double: 0.0017085\n value_double: -0.000199614\n "
"value_double: 0.000529526\n value_double: 0.000769364\n "
"value_double: 0.00135369\n value_double: 0.00132873\n "
"value_double: 0.000451174\n value_double: 0.000255218\n "
"value_double: 0.00102891\n value_double: -0.00160068\n "
"value_double: 0.000324269\n value_double: -0.000492347\n "
"value_double: 0.000925301\n value_double: 0.00281998\n "
"value_double: -0.000826404\n value_double: -0.000602903\n "
"value_double: 0.00126559\n value_double: 0.000924364\n "
"value_double: -9.19827e-05\n value_double: -5.59275e-05\n "
"value_double: 0.00107971\n value_double: -9.91756e-05\n "
"value_double: 0.000864708\n value_double: 0.00121747\n "
"value_double: 0.00146338\n value_double: 0.000186883\n "
"value_double: -0.00168195\n value_double: -0.00062029\n "
"value_double: 0.000658127\n value_double: 0.00115682\n "
"value_double: -0.00178359\n value_double: 0.000685606\n "
"value_double: -0.000503373\n value_double: -0.000312999\n "
"value_double: 0.000335383\n value_double: -1.08597e-05\n "
"value_double: -8.2499e-05\n value_double: -0.000469726\n "
"value_double: -0.00170868\n value_double: 0.000118957\n "
"value_double: -0.000460736\n value_double: -5.56372e-05\n "
"value_double: -0.00110148\n value_double: 0.00059123\n "
"value_double: 0.000386339\n value_double: -0.00139967\n "
"value_double: -0.000835664\n value_double: 0.00103421\n "
"value_double: -0.00104296\n value_double: -0.000687497\n "
"value_double: 1.1338e-05\n value_double: 0.00176484\n "
"value_double: 0.000531523\n value_double: -0.000986387\n "
"value_double: -0.00114152\n value_double: 0.000256744\n "
"value_double: 0.000228425\n value_double: 0.00116583\n "
"value_double: 0.0002726\n value_double: -0.00100828\n "
"value_double: -0.000950376\n value_double: -0.00229074\n "
"value_double: -0.000348272\n value_double: -0.000526032\n "
"value_double: -0.000133703\n value_double: 0.000310979\n "
"value_double: -0.00199278\n value_double: -0.000874469\n "
"value_double: -0.000631466\n value_double: 0.0010534\n "
"value_double: 0.00134646\n value_double: -0.00172743\n "
"value_double: 0.00131031\n value_double: -0.000697506\n "
"value_double: 0.000286747\n value_double: 0.000140759\n "
"value_double: 0.000568707\n value_double: 0.000108177\n "
"value_double: -0.00207337\n value_double: -0.00138146\n "
"value_double: 0.000483162\n value_double: -0.00167096\n "
"value_double: -0.000465813\n value_double: 0.00067724\n "
"value_double: 2.08388e-05\n value_double: -0.00203279\n "
"value_double: 7.8429e-05\n value_double: 0.00161337\n "
"value_double: -0.000269005\n value_double: 0.000217822\n "
"value_double: 0.000599886\n value_double: 0.000317549\n "
"value_double: 0.00146597\n value_double: -0.00210947\n "
"value_double: -0.000823917\n value_double: -6.83766e-05\n "
"value_double: 0.000656085\n value_double: 0.000117134\n "
"value_double: -0.000390405\n value_double: 2.39565e-05\n "
"value_double: 0.00104837\n value_double: -0.000563671\n "
"value_double: 0.000634073\n value_double: -0.000554531\n "
"value_double: 0.000677971\n value_double: -0.000596207\n "
"value_double: -0.00103335\n value_double: 0.000645199\n "
"value_double: 0.00162195\n value_double: 0.000239246\n "
"value_double: 0.00113519\n value_double: 0.000787431\n "
"value_double: -0.000471688\n value_double: -0.000216625\n "
"value_double: -0.000537156\n value_double: 0.000551816\n "
"value_double: 0.00094337\n value_double: -0.000708127\n "
"value_double: 0.000956955\n value_double: -0.000904936\n "
"value_double: -0.000424413\n value_double: 0.000106455\n "
"value_double: -0.000443952\n value_double: 0.000185436\n "
"value_double: 0.000944397\n value_double: -0.000760572\n "
"value_double: 0.000560002\n value_double: 4.09886e-05\n "
"value_double: -0.00075076\n value_double: -0.000701856\n "
"value_double: -0.000234851\n value_double: -0.000131515\n "
"value_double: -0.000761718\n value_double: -0.000267808\n "
"value_double: -0.00039682\n value_double: 0.000542953\n "
"value_double: -0.000817685\n value_double: 0.00103851\n "
"value_double: -0.000427176\n value_double: 0.000517784\n "
"value_double: -0.000823552\n value_double: -0.000742637\n "
"value_double: 0.000529213\n value_double: -0.000372805\n "
"value_double: 1.85745e-05\n value_double: 0.00139891\n "
"value_double: -0.000128417\n value_double: -0.000404316\n "
"value_double: -0.000671571\n value_double: 0.000490311\n "
"value_double: -0.00118493\n value_double: -0.000897118\n "
"value_double: 0.000939601\n value_double: 0.000376399\n "
"value_double: 0.0014709\n value_double: 0.000134806\n "
"value_double: -0.000294469\n value_double: -0.000569142\n "
"value_double: 0.00127266\n value_double: -0.00140936\n "
"value_double: 0.000870083\n value_double: 0.000287246\n "
"value_double: 0.000537685\n value_double: 0.000125569\n "
"value_double: 0.000360276\n value_double: -0.000186268\n "
"value_double: 0.0011141\n value_double: -0.000605185\n "
"value_double: -0.0016281\n value_double: -0.000552758\n "
"value_double: -0.000196755\n value_double: -0.00265188\n "
"value_double: 0.000480997\n value_double: 0.00018776\n "
"value_double: -0.00199234\n value_double: 0.000959982\n "
"value_double: 0.00040334\n value_double: -0.000693596\n "
"value_double: 0.00157678\n value_double: -0.00134499\n "
"value_double: 0.00121909\n value_double: -0.000328734\n "
"value_double: 0.000148554\n value_double: -0.000209509\n "
"value_double: -0.000266303\n value_double: -0.00134084\n "
"value_double: 5.21371e-05\n value_double: 0.0005329\n "
"value_double: -0.000168858\n value_double: -0.00074875\n "
"value_double: 0.000959397\n value_double: -0.00159476\n "
"value_double: -0.000368838\n value_double: 0.0006077\n "
"value_double: -0.00117243\n value_double: -0.00146013\n "
"value_double: 0.00031519\n value_double: -0.000167911\n "
"value_double: 0.000482571\n value_double: -0.000752268\n "
"value_double: -0.00042363\n value_double: 0.00121219\n "
"value_double: -0.000208159\n value_double: 0.000128531\n "
"value_double: -0.000406308\n value_double: -0.000242663\n "
"value_double: -3.96673e-05\n value_double: 0.00144854\n "
"value_double: -0.000787328\n value_double: -0.000401958\n "
"value_double: 0.00114091\n value_double: -0.000739546\n "
"value_double: 0.000483236\n value_double: -0.000916945\n "
"value_double: -0.00129577\n value_double: -0.00186504\n "
"value_double: 0.000806804\n value_double: -0.000152251\n "
"value_double: 0.000662576\n value_double: -0.000533236\n "
"value_double: 0.00151019\n value_double: 0.00127805\n "
"value_double: 0.00115399\n value_double: -0.00130876\n "
"value_double: 2.99457e-06\n value_double: 0.000820777\n "
"value_double: 0.000878393\n value_double: -0.000562642\n "
"value_double: -0.00070442\n value_double: -0.00066277\n "
"}\n}\nfloat_ops: 0\ntotal_float_ops: 0\n",
&expected));
EXPECT_EQ(expected.DebugString(), root.DebugString());
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,350 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include <stdio.h>
#include <algorithm>
#include <memory>
#include <set>
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/lib/strings/strcat.h"
#include "tensorflow/core/lib/strings/stringprintf.h"
#include "tensorflow/core/platform/protobuf.h"
#include "tensorflow/core/platform/regexp.h"
namespace tensorflow {
namespace tfprof {
string FormatNumber(int64 n) {
if (n < 1000) {
return strings::Printf("%lld", n);
} else if (n < 1000000) {
return strings::Printf("%.2fk", n / 1000.0);
} else if (n < 1000000000) {
return strings::Printf("%.2fm", n / 1000000.0);
} else {
return strings::Printf("%.2fb", n / 1000000000.0);
}
}
string FormatTime(int64 micros) {
if (micros < 1000) {
return strings::Printf("%lldus", micros);
} else if (micros < 1000000) {
return strings::Printf("%.2fms", micros / 1000.0);
} else {
return strings::Printf("%.2fsec", micros / 1000000.0);
}
}
string FormatMemory(int64 bytes) {
if (bytes < 1000) {
return strings::Printf("%lldB", bytes);
} else if (bytes < 1000000) {
return strings::Printf("%.2fKB", bytes / 1000.0);
} else {
return strings::Printf("%.2fMB", bytes / 1000000.0);
}
}
string FormatShapes(const std::vector<int64>& shape) {
return str_util::Join(shape, "x");
}
string StringReplace(const string& str, const string& oldsub,
const string& newsub) {
string out = str;
RE2::GlobalReplace(&out, oldsub, newsub);
return out;
}
Status ReadGraphDefText(Env* env, const string& fname, GraphDef* graph_def) {
string out;
Status s = ReadFileToString(env, fname, &out);
if (!s.ok()) return s;
if (protobuf::TextFormat::ParseFromString(out, graph_def)) {
return Status();
}
return errors::InvalidArgument("Cannot parse proto string.");
}
namespace {
string StripQuote(const string& s) {
int start = s.find_first_not_of("\"\'");
int end = s.find_last_not_of("\"\'");
if (start == s.npos || end == s.npos) return "";
return s.substr(start, end - start + 1);
}
tensorflow::Status ReturnError(const std::vector<string> pieces, int idx) {
string val;
if (pieces.size() > idx + 1) {
val = pieces[idx + 1];
}
return tensorflow::Status(
tensorflow::error::INVALID_ARGUMENT,
strings::StrCat("Invalid option '", pieces[idx], "' value: '", val, "'"));
}
bool CaseEqual(StringPiece s1, StringPiece s2) {
if (s1.size() != s2.size()) return false;
return str_util::Lowercase(s1) == str_util::Lowercase(s2);
}
bool StringToBool(StringPiece str, bool* value) {
CHECK(value != NULL) << "NULL output boolean given.";
if (CaseEqual(str, "true") || CaseEqual(str, "t") || CaseEqual(str, "yes") ||
CaseEqual(str, "y") || CaseEqual(str, "1")) {
*value = true;
return true;
}
if (CaseEqual(str, "false") || CaseEqual(str, "f") || CaseEqual(str, "no") ||
CaseEqual(str, "n") || CaseEqual(str, "0")) {
*value = false;
return true;
}
return false;
}
} // namespace
tensorflow::Status ParseCmdLine(const string& line, string* cmd,
tensorflow::tfprof::Options* opts) {
std::vector<string> pieces =
str_util::Split(line, ' ', str_util::SkipEmpty());
std::vector<string> cmds_str(kCmds, kCmds + sizeof(kCmds) / sizeof(*kCmds));
if (std::find(cmds_str.begin(), cmds_str.end(), pieces[0]) ==
cmds_str.end()) {
return tensorflow::Status(tensorflow::error::INVALID_ARGUMENT,
"First string must be a valid command.");
}
*cmd = pieces[0];
for (int i = 1; i < pieces.size(); ++i) {
if (pieces[i] == string(tensorflow::tfprof::kOptions[0])) {
if (pieces.size() <= i + 1 ||
!strings::safe_strto32(pieces[i + 1], &opts->max_depth)) {
return ReturnError(pieces, i);
}
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[1]) {
if (pieces.size() <= i + 1 ||
!strings::safe_strto64(pieces[i + 1], &opts->min_bytes)) {
return ReturnError(pieces, i);
}
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[2]) {
if (pieces.size() <= i + 1 ||
!strings::safe_strto64(pieces[i + 1], &opts->min_micros)) {
return ReturnError(pieces, i);
}
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[3]) {
if (pieces.size() <= i + 1 ||
!strings::safe_strto64(pieces[i + 1], &opts->min_params)) {
return ReturnError(pieces, i);
}
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[4]) {
if (pieces.size() <= i + 1 ||
!strings::safe_strto64(pieces[i + 1], &opts->min_float_ops)) {
return ReturnError(pieces, i);
}
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[5]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->device_regexes = str_util::Split(StripQuote(pieces[i + 1]), ',',
str_util::SkipEmpty());
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[6]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
std::set<string> order_by_set(
kOrderBy, kOrderBy + sizeof(kOrderBy) / sizeof(*kOrderBy));
auto order_by = order_by_set.find(pieces[i + 1]);
if (order_by == order_by_set.end()) {
return ReturnError(pieces, i);
}
opts->order_by = *order_by;
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[7]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->account_type_regexes = str_util::Split(StripQuote(pieces[i + 1]),
',', str_util::SkipEmpty());
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[8]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->start_name_regexes = str_util::Split(StripQuote(pieces[i + 1]), ',',
str_util::SkipEmpty());
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[9]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->trim_name_regexes = str_util::Split(StripQuote(pieces[i + 1]), ',',
str_util::SkipEmpty());
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[10]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->show_name_regexes = str_util::Split(StripQuote(pieces[i + 1]), ',',
str_util::SkipEmpty());
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[11]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->hide_name_regexes = str_util::Split(StripQuote(pieces[i + 1]), ',',
str_util::SkipEmpty());
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[12]) {
if ((pieces.size() > i + 1 && pieces[i + 1].find("-") == 0) ||
pieces.size() == i + 1) {
opts->account_displayed_op_only = true;
} else if (!StringToBool(pieces[i + 1],
&opts->account_displayed_op_only)) {
return ReturnError(pieces, i);
} else {
++i;
}
} else if (pieces[i] == tensorflow::tfprof::kOptions[13]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
std::set<string> shown_set(kShown,
kShown + sizeof(kShown) / sizeof(*kShown));
std::vector<string> requested_vector = str_util::Split(
StripQuote(pieces[i + 1]), ',', str_util::SkipEmpty());
std::set<string> requested_set(requested_vector.begin(),
requested_vector.end());
for (const string& requested : requested_set) {
if (shown_set.find(requested) == shown_set.end()) {
return ReturnError(pieces, i);
}
}
opts->select = requested_set;
++i;
} else if (pieces[i] == tensorflow::tfprof::kOptions[14]) {
if ((pieces.size() > i + 1 && pieces[i + 1].find("-") == 0) ||
pieces.size() == i + 1) {
opts->viz = true;
} else if (!StringToBool(pieces[i + 1], &opts->viz)) {
return ReturnError(pieces, i);
} else {
++i;
}
} else if (pieces[i] == tensorflow::tfprof::kOptions[15]) {
if (pieces.size() <= i + 1) {
return ReturnError(pieces, i);
}
opts->dump_to_file = StripQuote(pieces[i + 1]);
++i;
} else {
return ReturnError(pieces, i);
}
}
return tensorflow::Status::OK();
}
void PrintHelp() {
printf(
"\nSee go/tfprof for detail tutorial.\n"
"\nCommands\n\n"
" scope: Each op has its op name in TensorFlow, such as 'n1', 'n1/n2', "
"'n1/n2/n3'. 'n1/n2' is a child of 'n1'. 'scope' command builds "
"a name scope tree and aggregates statistics based on it.\n\n"
" graph: ops in TensorFlow are organized as a graph based on their "
"the source (inputs) and sink (outputs). 'graph' command builds "
"a graph pointing *from output to input*, and aggregates "
"statistics based on it.\n\n"
" set: Set options that will be default for follow up commands.\n\n"
" help: Show helps.\n"
"\nOptions\n\n"
"Press Enter in CLI to see default option values.\n\n"
" -max_depth: Show ops that are at most this number of hops from "
"starting op in the tree/graph structure.\n\n"
" -min_bytes: Show ops that request at least this number of bytes.\n\n"
" -min_micros: Show ops that spend at least this number of micros to "
"run.\n\n"
" -min_params: Show ops that contains at least this number of "
"parameters.\n\n"
" -min_float_ops: Show ops that contain at least this number of "
"float operations. Only available if an op has "
"op.RegisterStatistics() defined and OpLog is "
"provided\n\n"
" -device_regexes: Show ops that a placed on the specified devices. "
"regexes are comma-separated.\n\n"
" -order_by: Order the results by [name|depth|bytes|micros|params|"
"float_ops]\n\n"
" -account_type_regexes: Account and display the ops whose types match "
"one of the type regexes specified. tfprof "
"allow user to define extra op types for ops "
"through tensorflow.tfprof.OpLog proto. regexes "
"are comma-sperated.\n\n"
" -start_name_regexes: Show ops starting from the ops that matches the "
"regexes, recursively. regexes are "
"comma-separated.\n\n"
" -trim_name_regexes: Hide ops starting from the ops that matches the "
"regexes, recursively, regexes are comma-seprated. "
"\n\n"
" -show_name_regexes: Show ops that match the regexes. regexes are "
"comma-seprated.\n\n"
" -hide_name_regexes: Hide ops that match the regexes. regexes are "
"comma-seprated.\n\n"
""
" Notes: For each op, -acount_type_regexes is first evaluated, "
"only ops with types matching the specified regexes are accounted and "
"selected for displayed. -start/trim/show/hide_name_regexes are used "
"to further filter ops for display. -start_name_regexes is evaluated "
"first to search the starting ops to display. Descendants of starting "
"ops are then evaluated against show/hide_name_regexes to make display "
"decision. If an op matches trim_name_regexes, all its descendants are "
"hidden.\n"
"Ops statistics are *accounted even if they are hidden* as long as "
"they match the -account_xxx options.\n\n"
" -account_displayed_op_only: If True, only account the statistics of "
"ops eventually displayed. If False, account all "
"op statistics matching -account_type_regexes recursively.\n\n"
" -select: Comma-separated list of metrics to show: [bytes|micros|"
"params|float_ops|num_hidden_ops|tensor_value|device|op_types]."
"\n\n"
" -dump_to_file: Dump the output to a file, instead of terminal.\n\n"
""
"Examples\n"
" Assuming a toy model:\n"
" intput(typeB)->conv2d_1(typeA)->conv2d_2(typeA)->"
"fc(typeA)->cost(typeA)->summarize(typeC)\n"
" Command:\n"
" tfprof> graph -account_type_regexes typeA -start_name_regexes "
"cost.* -show_name_regexes conv2d.* -max_depth 10\n\n"
" The above command only aggregate statistics of all ops of typeA ("
"hence ignoring input(typeB)). It will start looking for candidate to "
"display from cost.* and finally displays conv2d_1 and conv2d_2.\n\n");
fflush(stdout);
}
} // namespace tfprof
} // namespace tensorflow

View File

@ -0,0 +1,50 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_UTILS_H_
#define THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_UTILS_H_
#include <string>
#include <vector>
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/platform/env.h"
namespace tensorflow {
namespace tfprof {
string FormatNumber(int64 n);
string FormatTime(int64 micros);
string FormatMemory(int64 bytes);
string FormatShapes(const std::vector<int64>& shapes);
tensorflow::Status ParseCmdLine(const string& line, string* cmd,
tensorflow::tfprof::Options* opts);
string StringReplace(const string& str, const string& oldsub,
const string& newsub);
Status ReadGraphDefText(Env* env, const string& fname, GraphDef* graph_def);
void PrintHelp();
} // namespace tfprof
} // namespace tensorflow
#endif // THIRD_PARTY_TENSORFLOW_CONTRIB_TFPROF_TOOLS_TFPROF_INTERNAL_TFPROF_UTILS_H_

View File

@ -0,0 +1,19 @@
syntax = "proto2";
package tensorflow.tfprof;
message OpLogEntry {
// op name.
optional string name = 1;
// float_ops is filled by tfprof Python API when called. It requires the
// op has RegisterStatistics defined. Currently, Conv2D, MatMul, etc, are
// implemented.
optional int64 float_ops = 2;
// User can define extra op type information for an op. This allows the user
// to select a group of ops precisely using op_type as a key.
repeated string types = 3;
}
message OpLog {
repeated OpLogEntry log_entries = 1;
}

View File

@ -0,0 +1,236 @@
/* Copyright 2016 The TensorFlow Authors All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include <stdio.h>
#include <stdlib.h>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include "linenoise.h"
#include "tensorflow/c/c_api.h"
#include "tensorflow/c/checkpoint_reader.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_options.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_stats.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/internal/tfprof_utils.h"
#include "tensorflow/contrib/tfprof/tools/tfprof/tfprof_log.pb.h"
#include "tensorflow/core/framework/graph.pb.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/str_util.h"
#include "tensorflow/core/platform/env.h"
#include "tensorflow/core/platform/init_main.h"
#include "tensorflow/core/protobuf/config.pb.h"
#include "tensorflow/core/util/command_line_flags.h"
using tensorflow::str_util::Split;
void completion(const char* buf, linenoiseCompletions* lc) {
tensorflow::string buf_str = tensorflow::string(buf);
if (buf_str.find(" ") == buf_str.npos) {
for (const char* opt : tensorflow::tfprof::kCmds) {
if (tensorflow::string(opt).find(buf_str) == 0) {
linenoiseAddCompletion(lc, opt);
}
}
return;
}
tensorflow::string prefix;
int last_dash = buf_str.find_last_of(' ');
if (last_dash != tensorflow::string::npos) {
prefix = buf_str.substr(0, last_dash + 1);
buf_str = buf_str.substr(last_dash + 1, tensorflow::kint32max);
}
for (const char* opt : tensorflow::tfprof::kOptions) {
if (tensorflow::string(opt).find(buf_str) == 0) {
linenoiseAddCompletion(lc, (prefix + opt).c_str());
}
}
}
int main(int argc, char** argv) {
tensorflow::string FLAGS_graph_path = "";
tensorflow::string FLAGS_run_meta_path = "";
tensorflow::string FLAGS_op_log_path = "";
tensorflow::string FLAGS_checkpoint_path = "";
tensorflow::int32 FLAGS_max_depth = 4;
tensorflow::int64 FLAGS_min_bytes = 0;
tensorflow::int64 FLAGS_min_micros = 0;
tensorflow::int64 FLAGS_min_params = 0;
tensorflow::int64 FLAGS_min_float_ops = 0;
tensorflow::string FLAGS_device_regexes = ".*";
tensorflow::string FLAGS_order_by = "name";
tensorflow::string FLAGS_account_type_regexes = "Variable";
tensorflow::string FLAGS_start_name_regexes = ".*";
tensorflow::string FLAGS_trim_name_regexes = "";
tensorflow::string FLAGS_show_name_regexes = ".*";
tensorflow::string FLAGS_hide_name_regexes;
bool FLAGS_account_displayed_op_only = false;
tensorflow::string FLAGS_select = "params";
bool FLAGS_viz = false;
tensorflow::string FLAGS_dump_to_file = "";
for (int i = 0; i < argc; i++) {
fprintf(stderr, "%s\n", argv[i]);
}
CHECK(tensorflow::ParseFlags(
&argc, argv,
{tensorflow::Flag("graph_path", &FLAGS_graph_path),
tensorflow::Flag("run_meta_path", &FLAGS_run_meta_path),
tensorflow::Flag("op_log_path", &FLAGS_op_log_path),
tensorflow::Flag("checkpoint_path", &FLAGS_checkpoint_path),
tensorflow::Flag("max_depth", &FLAGS_max_depth),
tensorflow::Flag("min_bytes", &FLAGS_min_bytes),
tensorflow::Flag("min_micros", &FLAGS_min_micros),
tensorflow::Flag("min_params", &FLAGS_min_params),
tensorflow::Flag("min_float_ops", &FLAGS_min_float_ops),
tensorflow::Flag("device_regexes", &FLAGS_device_regexes),
tensorflow::Flag("order_by", &FLAGS_order_by),
tensorflow::Flag("account_type_regexes", &FLAGS_start_name_regexes),
tensorflow::Flag("trim_name_regexes", &FLAGS_trim_name_regexes),
tensorflow::Flag("show_name_regexes", &FLAGS_show_name_regexes),
tensorflow::Flag("hide_name_regexes", &FLAGS_hide_name_regexes),
tensorflow::Flag("account_displayed_op_only",
&FLAGS_account_displayed_op_only),
tensorflow::Flag("select", &FLAGS_select),
tensorflow::Flag("dump_to_file", &FLAGS_dump_to_file)}));
tensorflow::port::InitMain(argv[0], &argc, &argv);
fprintf(stderr, "%s\n", FLAGS_graph_path.c_str());
std::vector<tensorflow::string> device_regexes =
Split(FLAGS_device_regexes, ',', tensorflow::str_util::SkipEmpty());
std::vector<tensorflow::string> account_type_regexes =
Split(FLAGS_account_type_regexes, ',', tensorflow::str_util::SkipEmpty());
std::vector<tensorflow::string> start_name_regexes =
Split(FLAGS_start_name_regexes, ',', tensorflow::str_util::SkipEmpty());
std::vector<tensorflow::string> trim_name_regexes =
Split(FLAGS_trim_name_regexes, ',', tensorflow::str_util::SkipEmpty());
std::vector<tensorflow::string> show_name_regexes =
Split(FLAGS_show_name_regexes, ',', tensorflow::str_util::SkipEmpty());
std::vector<tensorflow::string> hide_name_regexes =
Split(FLAGS_hide_name_regexes, ',', tensorflow::str_util::SkipEmpty());
std::vector<tensorflow::string> select =
Split(FLAGS_select, ',', tensorflow::str_util::SkipEmpty());
tensorflow::string cmd = "";
if (argc == 1 && FLAGS_graph_path.empty()) {
printf("1) go/tfprof: Tutorial.\n");
printf("2) tfprof help: Detail help information.\n");
printf(
"3) tfprof --graph_path <GraphDef proto text file>: "
"Profiling model structure, tensor shape and # parameters.\n");
printf(
"4) tfprof --graph_path <GraphDef proto text file> \\\n"
" --run_meta_path <RunMetadata proto binary file> \\\n"
" --op_log_path <tensorflow::tfprof::OpLog proto binary file> "
"\\\n"
" --checkpoint_path <TensorFlow Checkpoint file>: "
"Profiling everything!\n");
return 0;
} else if (argc > 1) {
if (tensorflow::string(argv[1]) == tensorflow::tfprof::kCmds[3]) {
tensorflow::tfprof::PrintHelp();
return 0;
}
if (tensorflow::string(argv[1]) == tensorflow::tfprof::kCmds[0] ||
tensorflow::string(argv[1]) == tensorflow::tfprof::kCmds[1]) {
cmd = argv[1];
}
}
printf("Reading Files...\n");
std::unique_ptr<tensorflow::GraphDef> graph(new tensorflow::GraphDef());
TF_CHECK_OK(tensorflow::tfprof::ReadGraphDefText(
tensorflow::Env::Default(), FLAGS_graph_path, graph.get()));
std::unique_ptr<tensorflow::RunMetadata> run_meta(
new tensorflow::RunMetadata());
if (!ReadBinaryProto(tensorflow::Env::Default(), FLAGS_run_meta_path,
run_meta.get())
.ok()) {
run_meta.release();
}
std::unique_ptr<tensorflow::tfprof::OpLog> op_log(
new tensorflow::tfprof::OpLog());
if (!ReadBinaryProto(tensorflow::Env::Default(), FLAGS_op_log_path,
op_log.get())
.ok()) {
op_log.release();
}
std::unique_ptr<tensorflow::checkpoint::CheckpointReader> ckpt_reader;
TF_Status* status = TF_NewStatus();
if (!FLAGS_checkpoint_path.empty()) {
ckpt_reader.reset(new tensorflow::checkpoint::CheckpointReader(
FLAGS_checkpoint_path, status));
if (TF_GetCode(status) != TF_OK) {
fprintf(stderr, "%s\n", TF_Message(status));
TF_DeleteStatus(status);
return 1;
}
TF_DeleteStatus(status);
}
tensorflow::tfprof::TFStats tf_stat(std::move(graph), std::move(run_meta),
std::move(op_log),
std::move(ckpt_reader));
tensorflow::tfprof::Options opts(
FLAGS_max_depth, FLAGS_min_bytes, FLAGS_min_micros, FLAGS_min_params,
FLAGS_min_float_ops, device_regexes, FLAGS_order_by, account_type_regexes,
start_name_regexes, trim_name_regexes, show_name_regexes,
hide_name_regexes, FLAGS_account_displayed_op_only, select, FLAGS_viz,
FLAGS_dump_to_file);
if (!cmd.empty()) {
tf_stat.PrintGraph(cmd, opts);
return 0;
}
linenoiseSetCompletionCallback(completion);
linenoiseHistoryLoad(".tfprof_history.txt");
for (char* line = nullptr; (line = linenoise("tfprof> ")) != nullptr;) {
tensorflow::string line_s = tensorflow::string(line);
free(line);
if (line_s.empty()) {
printf("%s", opts.ToString().c_str());
continue;
}
linenoiseHistoryAdd(line_s.c_str());
linenoiseHistorySave(".tfprof_history.txt");
tensorflow::tfprof::Options new_opts = opts;
tensorflow::Status s =
tensorflow::tfprof::ParseCmdLine(line_s, &cmd, &new_opts);
if (!s.ok()) {
fprintf(stderr, "E: %s\n", s.ToString().c_str());
continue;
}
if (cmd == tensorflow::tfprof::kCmds[2]) {
opts = new_opts;
} else if (cmd == tensorflow::tfprof::kCmds[3]) {
tensorflow::tfprof::PrintHelp();
} else {
tf_stat.PrintGraph(cmd, new_opts);
}
}
return 0;
}

View File

@ -0,0 +1,49 @@
syntax = "proto2";
import "tensorflow/core/framework/tensor_shape.proto";
import "tensorflow/core/framework/types.proto";
package tensorflow.tfprof;
message TFProfTensorProto {
optional DataType dtype = 1;
// Flatten tensor in row-major.
// Only one of the following array is set.
repeated double value_double = 2;
repeated int64 value_int64 = 3;
repeated string value_str = 4;
}
message TFProfNode {
// op name.
optional string name = 1;
// tensor value restored from checkpoint.
optional TFProfTensorProto tensor_value = 15;
// op execution time.
optional int64 exec_micros = 2;
// Total requested bytes by the op.
optional int64 requested_bytes = 3;
// Number of parameters if available.
optional int64 parameters = 4;
// Number of float operations.
optional int64 float_ops = 13;
// Number of inputs to the op.
optional int64 inputs = 5;
// Device the op is assigned to.
optional string device = 10;
// The following are the aggregated stats from all accounted descendants and
// the op itself. The actual descendants depend on the data structure used
// (scope, graph).
optional int64 total_exec_micros = 6;
optional int64 total_requested_bytes = 7;
optional int64 total_parameters = 8;
optional int64 total_float_ops = 14;
optional int64 total_inputs = 9;
// shape information, if available.
repeated TensorShapeProto shapes = 11;
// Descendants of the graph. The actual descendants depend on the data
// structure used (scope, graph).
repeated TFProfNode children = 12;
}

View File

@ -47,6 +47,22 @@ bool ParseInt32Flag(tensorflow::StringPiece arg, tensorflow::StringPiece flag,
return false;
}
bool ParseInt64Flag(tensorflow::StringPiece arg, tensorflow::StringPiece flag,
tensorflow::int64* dst, bool* value_parsing_ok) {
*value_parsing_ok = true;
if (arg.Consume("--") && arg.Consume(flag) && arg.Consume("=")) {
char extra;
if (sscanf(arg.data(), "%lld%c", dst, &extra) != 1) {
LOG(ERROR) << "Couldn't interpret value " << arg << " for flag " << flag
<< ".";
*value_parsing_ok = false;
}
return true;
}
return false;
}
bool ParseBoolFlag(tensorflow::StringPiece arg, tensorflow::StringPiece flag,
bool* dst, bool* value_parsing_ok) {
*value_parsing_ok = true;
@ -78,6 +94,9 @@ bool ParseBoolFlag(tensorflow::StringPiece arg, tensorflow::StringPiece flag,
Flag::Flag(const char* name, tensorflow::int32* dst)
: name_(name), type_(TYPE_INT), int_value_(dst) {}
Flag::Flag(const char* name, tensorflow::int64* dst)
: name_(name), type_(TYPE_INT64), int64_value_(dst) {}
Flag::Flag(const char* name, bool* dst)
: name_(name), type_(TYPE_BOOL), bool_value_(dst) {}
@ -88,6 +107,8 @@ bool Flag::Parse(string arg, bool* value_parsing_ok) const {
bool result = false;
if (type_ == TYPE_INT) {
result = ParseInt32Flag(arg, name_, int_value_, value_parsing_ok);
} else if (type_ == TYPE_INT64) {
result = ParseInt64Flag(arg, name_, int64_value_, value_parsing_ok);
} else if (type_ == TYPE_BOOL) {
result = ParseBoolFlag(arg, name_, bool_value_, value_parsing_ok);
} else if (type_ == TYPE_STRING) {

View File

@ -49,6 +49,7 @@ namespace tensorflow {
class Flag {
public:
Flag(const char* name, int32* dst1);
Flag(const char* name, int64* dst1);
Flag(const char* name, bool* dst);
Flag(const char* name, string* dst);
@ -56,8 +57,9 @@ class Flag {
private:
string name_;
enum { TYPE_INT, TYPE_BOOL, TYPE_STRING } type_;
enum { TYPE_INT, TYPE_INT64, TYPE_BOOL, TYPE_STRING } type_;
int* int_value_;
int64* int64_value_;
bool* bool_value_;
string* string_value_;
};

View File

@ -33,19 +33,21 @@ std::vector<char*> CharPointerVectorFromStrings(
TEST(CommandLineFlagsTest, BasicUsage) {
int some_int = 10;
int64 some_int64 = 21474836470; // max int32 is 2147483647
bool some_switch = false;
tensorflow::string some_name = "something";
int argc = 4;
int argc = 5;
std::vector<tensorflow::string> argv_strings = {
"program_name", "--some_int=20", "--some_switch",
"--some_name=somethingelse"};
"program_name", "--some_int=20", "--some_int64=214748364700",
"--some_switch", "--some_name=somethingelse"};
std::vector<char*> argv_array = CharPointerVectorFromStrings(argv_strings);
bool parsed_ok =
ParseFlags(&argc, argv_array.data(), {Flag("some_int", &some_int),
Flag("some_switch", &some_switch),
Flag("some_name", &some_name)});
bool parsed_ok = ParseFlags(
&argc, argv_array.data(),
{Flag("some_int", &some_int), Flag("some_int64", &some_int64),
Flag("some_switch", &some_switch), Flag("some_name", &some_name)});
EXPECT_EQ(true, parsed_ok);
EXPECT_EQ(20, some_int);
EXPECT_EQ(214748364700, some_int64);
EXPECT_EQ(true, some_switch);
EXPECT_EQ("somethingelse", some_name);
EXPECT_EQ(argc, 1);

View File

@ -152,6 +152,14 @@ def tf_workspace(path_prefix = "", tf_repo_name = ""):
actual = "@grpc//:grpc++_unsecure",
)
native.new_git_repository(
name = "linenoise",
commit = "c894b9e59f02203dbe4e2be657572cf88c4230c3",
init_submodules = True,
remote = "https://github.com/antirez/linenoise.git",
build_file = str(Label("//:linenoise.BUILD")),
)
native.new_http_archive(
name = "jsoncpp_git",
url = "http://github.com/open-source-parsers/jsoncpp/archive/11086dd6a7eba04289944367ca82cea71299ed70.tar.gz",