Add a compile flag (i.e. adding "--define tflite_with_xnnpack=true" when using bazel to build, which corresponds to defining macro TFLITE_BUILD_WITH_XNNPACK_DELEGATE) to apply XNNPACK delegate in TFLite runtime.

This is mainly to support Windows where weak symbols are not supported.

PiperOrigin-RevId: 312011534
Change-Id: I27c6b206b8aa8ded2d2671c2fca843574f75752b
This commit is contained in:
Chao Mei 2020-05-17 21:07:20 -07:00 committed by TensorFlower Gardener
parent c4a9de9674
commit e480d8f7ff
4 changed files with 117 additions and 19 deletions

View File

@ -246,6 +246,7 @@ cc_library(
":minimal_logging",
":simple_memory_arena",
":string",
":tflite_with_xnnpack_optional",
":type_to_tflitetype",
":util",
":version",
@ -311,6 +312,8 @@ cc_library(
],
)
# Link this library to inject XNNPACK delegate to TFLite runtime automatically
# by utilizing the weak symbols if they're supported by the platform.
cc_library(
name = "tflite_with_xnnpack",
srcs = ["tflite_with_xnnpack.cc"],
@ -323,6 +326,35 @@ cc_library(
alwayslink = 1,
)
# Enables applying XNNPACK delegate for float models in TFLite runtime.
# WARNING: This build flag is experimental and subject to change.
config_setting(
name = "tflite_with_xnnpack_enabled",
values = {"define": "tflite_with_xnnpack=true"},
)
cc_library(
name = "tflite_with_xnnpack_optional",
srcs = ["tflite_with_xnnpack_optional.cc"],
hdrs = [
"core/macros.h",
"tflite_with_xnnpack_optional.h",
],
copts = tflite_copts() + TFLITE_DEFAULT_COPTS,
defines = select({
":tflite_with_xnnpack_enabled": ["TFLITE_BUILD_WITH_XNNPACK_DELEGATE"],
"//conditions:default": [],
}),
deps = [
"//tensorflow/lite/c:common",
] + select({
":tflite_with_xnnpack_enabled": [
"//tensorflow/lite/delegates/xnnpack:xnnpack_delegate",
],
"//conditions:default": [],
}),
)
cc_test(
name = "string_util_test",
size = "small",

View File

@ -28,6 +28,7 @@ limitations under the License.
#include "tensorflow/lite/core/api/flatbuffer_conversions.h"
#include "tensorflow/lite/kernels/internal/compatibility.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/tflite_with_xnnpack_optional.h"
#include "tensorflow/lite/util.h"
#include "tensorflow/lite/version.h"
@ -108,27 +109,14 @@ TfLiteStatus ParseSparseIndexVector(const DimensionMetadata* src,
const char* kEmptyTensorName = "";
#if TFLITE_HAS_ATTRIBUTE_WEAK
// Using weak symbols to create a delegate allows automatic injection of the
// delegate simply by adding it as a dependency.
// For flex delegate, see also the strong override in
// lite/delegates/flex/delegate.cc.
TFLITE_ATTRIBUTE_WEAK Interpreter::TfLiteDelegatePtr AcquireFlexDelegate() {
return Interpreter::TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {});
}
// For XNNPACK delegate, see also the strong override in
// lite/tflite_with_xnnpack.cc.
TFLITE_ATTRIBUTE_WEAK Interpreter::TfLiteDelegatePtr AcquireXNNPACKDelegate(
int num_threads) {
return Interpreter::TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {});
}
#else
Interpreter::TfLiteDelegatePtr (*AcquireFlexDelegate)() = nullptr;
Interpreter::TfLiteDelegatePtr (*AcquireXNNPACKDelegate)(int) = nullptr;
#endif
namespace impl {
InterpreterBuilder::InterpreterBuilder(const FlatBufferModel& model,
@ -541,17 +529,17 @@ TfLiteStatus InterpreterBuilder::ParseTensors(
TfLiteStatus InterpreterBuilder::ApplyDelegates(Interpreter* interpreter,
int num_threads) {
// First, apply XNNPACK delegate if applicable.
if (AcquireXNNPACKDelegate && num_fp32_tensors_ > 0) {
if (auto xnnpack_delegate = AcquireXNNPACKDelegate(num_threads)) {
// The execution will fall back to default implementation if the XNNPACK
// delegate fails to be applied. Therefore, we ignore the return status
// here and let it fall through the rest of the code.
if (num_fp32_tensors_ > 0) {
// The execution will fall back to default implementation if the XNNPACK
// delegate fails to be applied. Therefore, we ignore the return status
// here and let it fall through the rest of the code.
if (auto xnnpack_delegate = MaybeCreateXNNPACKDelegate(num_threads)) {
interpreter->ModifyGraphWithDelegate(std::move(xnnpack_delegate));
}
}
// Secondly, apply Flex delegate if applicable.
if (has_flex_op_ && AcquireFlexDelegate) {
if (has_flex_op_) {
if (auto flex_delegate = AcquireFlexDelegate()) {
return interpreter->ModifyGraphWithDelegate(std::move(flex_delegate));
}

View File

@ -0,0 +1,52 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#include "tensorflow/lite/tflite_with_xnnpack_optional.h"
#include "tensorflow/lite/core/macros.h"
#ifdef TFLITE_BUILD_WITH_XNNPACK_DELEGATE
#include "tensorflow/lite/delegates/xnnpack/xnnpack_delegate.h"
#endif
namespace tflite {
using TfLiteDelegatePtr =
std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>;
#ifndef TFLITE_BUILD_WITH_XNNPACK_DELEGATE
// Using weak symbols to create a delegate allows automatic injection of the
// delegate simply by adding it as a dependency. See the strong override in
// lite/tflite_with_xnnpack.cc,
TFLITE_ATTRIBUTE_WEAK TfLiteDelegatePtr
AcquireXNNPACKDelegate(int num_threads) {
return TfLiteDelegatePtr(nullptr, [](TfLiteDelegate*) {});
}
#endif
#ifdef TFLITE_BUILD_WITH_XNNPACK_DELEGATE
TfLiteDelegatePtr MaybeCreateXNNPACKDelegate(int num_threads) {
auto opts = TfLiteXNNPackDelegateOptionsDefault();
// Note that we don't want to use the thread pool for num_threads == 1.
opts.num_threads = num_threads > 1 ? num_threads : 0;
return TfLiteDelegatePtr(TfLiteXNNPackDelegateCreate(&opts),
TfLiteXNNPackDelegateDelete);
}
#else
TfLiteDelegatePtr MaybeCreateXNNPACKDelegate(int num_threads) {
return AcquireXNNPACKDelegate(num_threads);
}
#endif
} // namespace tflite

View File

@ -0,0 +1,26 @@
/* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
#ifndef TENSORFLOW_LITE_TFLITE_WITH_XNNPACK_OPTIONAL_H_
#define TENSORFLOW_LITE_TFLITE_WITH_XNNPACK_OPTIONAL_H_
#include <memory>
#include "tensorflow/lite/c/common.h"
namespace tflite {
std::unique_ptr<TfLiteDelegate, void (*)(TfLiteDelegate*)>
MaybeCreateXNNPACKDelegate(int num_threads);
} // namespace tflite
#endif // TENSORFLOW_LITE_TFLITE_WITH_XNNPACK_OPTIONAL_H_