diff --git a/tensorflow/core/kernels/training_ops.cc b/tensorflow/core/kernels/training_ops.cc index 3a54d8a2d0e..11b6b838af6 100644 --- a/tensorflow/core/kernels/training_ops.cc +++ b/tensorflow/core/kernels/training_ops.cc @@ -2704,7 +2704,6 @@ REGISTER_KERNELS(GPU, double); #undef REGISTER_CPU_KERNELS #undef REGISTER_KERNELS -// Note, this op works on cpu only. template class SparseApplyFtrlOp : public OpKernel { public: diff --git a/tensorflow/core/kernels/training_ops_gpu.cu.cc b/tensorflow/core/kernels/training_ops_gpu.cu.cc index 7581d0574f8..d0c3ba4e3f9 100644 --- a/tensorflow/core/kernels/training_ops_gpu.cu.cc +++ b/tensorflow/core/kernels/training_ops_gpu.cu.cc @@ -658,10 +658,15 @@ struct SparseApplyFtrl { GpuLaunchConfig config = GetGpuLaunchConfig(grad_size, d); return GpuLaunchKernel( SparseApplyFtrlKernel, config.block_count, - config.thread_per_block, 0, d.stream(), var.data(), accum.data(), - linear.data(), lr.data(), l1.data(), l2.data(), l2_shrinkage.data(), - lr_power.data(), grad.data(), indices.data(), first_dim_size, grad_size, - indices_size, multiply_linear_by_lr); + config.thread_per_block, 0, d.stream(), /*var=*/var.data(), + /*accum=*/accum.data(), + /*linear=*/linear.data(), /*lr=*/lr.data(), /*l1=*/l1.data(), + /*l2=*/l2.data(), /*l2_shrinkage=*/l2_shrinkage.data(), + /*lr_power=*/lr_power.data(), /*grad=*/grad.data(), + /*indices=*/indices.data(), /*param_rows=*/first_dim_size, + /*updates_size=*/grad_size, + /*indices_size=*/indices_size, + /*multiply_linear_by_lr=*/multiply_linear_by_lr); } };