[lite] Use LOG(ERROR) and exit(-1) rather than LOG(FATAL) in label_image example.

Using LOG(FATAL) in this file is misleading, since in this file LOG(x) is just
defined using std::cerr, and so LOG(FATAL) does not actually abort the process.

PiperOrigin-RevId: 333613937
Change-Id: Iaddf092f0b14206b3a8342f1fef0bfa2e7a624eb
This commit is contained in:
Fergus Henderson 2020-09-24 15:41:24 -07:00 committed by TensorFlower Gardener
parent 949f8ea44a
commit e27370980e

View File

@ -126,7 +126,7 @@ TfLiteStatus ReadLabelsFile(const string& file_name,
size_t* found_label_count) {
std::ifstream file(file_name);
if (!file) {
LOG(FATAL) << "Labels file " << file_name << " not found\n";
LOG(ERROR) << "Labels file " << file_name << " not found\n";
return kTfLiteError;
}
result->clear();
@ -170,7 +170,7 @@ void RunInference(Settings* s) {
std::unique_ptr<tflite::Interpreter> interpreter;
model = tflite::FlatBufferModel::BuildFromFile(s->model_name.c_str());
if (!model) {
LOG(FATAL) << "\nFailed to mmap model " << s->model_name << "\n";
LOG(ERROR) << "\nFailed to mmap model " << s->model_name << "\n";
exit(-1);
}
s->model = model.get();
@ -182,7 +182,7 @@ void RunInference(Settings* s) {
tflite::InterpreterBuilder(*model, resolver)(&interpreter);
if (!interpreter) {
LOG(FATAL) << "Failed to construct interpreter\n";
LOG(ERROR) << "Failed to construct interpreter\n";
exit(-1);
}
@ -230,14 +230,16 @@ void RunInference(Settings* s) {
for (const auto& delegate : delegates_) {
if (interpreter->ModifyGraphWithDelegate(delegate.second.get()) !=
kTfLiteOk) {
LOG(FATAL) << "Failed to apply " << delegate.first << " delegate.";
LOG(ERROR) << "Failed to apply " << delegate.first << " delegate.";
exit(-1);
} else {
LOG(INFO) << "Applied " << delegate.first << " delegate.";
}
}
if (interpreter->AllocateTensors() != kTfLiteOk) {
LOG(FATAL) << "Failed to allocate tensors!";
LOG(ERROR) << "Failed to allocate tensors!";
exit(-1);
}
if (s->verbose) PrintInterpreterState(interpreter.get());
@ -267,7 +269,7 @@ void RunInference(Settings* s) {
wanted_width, wanted_channels, s);
break;
default:
LOG(FATAL) << "cannot handle input type "
LOG(ERROR) << "cannot handle input type "
<< interpreter->tensor(input)->type << " yet";
exit(-1);
}
@ -279,7 +281,8 @@ void RunInference(Settings* s) {
if (s->loop_count > 1)
for (int i = 0; i < s->number_of_warmup_runs; i++) {
if (interpreter->Invoke() != kTfLiteOk) {
LOG(FATAL) << "Failed to invoke tflite!\n";
LOG(ERROR) << "Failed to invoke tflite!\n";
exit(-1);
}
}
@ -287,7 +290,8 @@ void RunInference(Settings* s) {
gettimeofday(&start_time, nullptr);
for (int i = 0; i < s->loop_count; i++) {
if (interpreter->Invoke() != kTfLiteOk) {
LOG(FATAL) << "Failed to invoke tflite!\n";
LOG(ERROR) << "Failed to invoke tflite!\n";
exit(-1);
}
}
gettimeofday(&stop_time, nullptr);
@ -336,7 +340,7 @@ void RunInference(Settings* s) {
&top_results, s->input_type);
break;
default:
LOG(FATAL) << "cannot handle output type "
LOG(ERROR) << "cannot handle output type "
<< interpreter->tensor(output)->type << " yet";
exit(-1);
}