Export RandomZoom after its odd behavior was fixed.
PiperOrigin-RevId: 311417546 Change-Id: Idb5bcff8b97a1bba1ab054a19ad0a701cf04cc00
This commit is contained in:
parent
7e39134874
commit
e1b0e64119
@ -827,6 +827,7 @@ class RandomRotation(Layer):
|
|||||||
return dict(list(base_config.items()) + list(config.items()))
|
return dict(list(base_config.items()) + list(config.items()))
|
||||||
|
|
||||||
|
|
||||||
|
@keras_export('keras.layers.experimental.preprocessing.RandomZoom')
|
||||||
class RandomZoom(Layer):
|
class RandomZoom(Layer):
|
||||||
"""Randomly zoom each image during training.
|
"""Randomly zoom each image during training.
|
||||||
|
|
||||||
@ -847,7 +848,8 @@ class RandomZoom(Layer):
|
|||||||
For instance, `width_factor=(0.2, 0.3)` result in an output zooming out
|
For instance, `width_factor=(0.2, 0.3)` result in an output zooming out
|
||||||
between 20% to 30%.
|
between 20% to 30%.
|
||||||
`width_factor=(-0.3, -0.2)` result in an output zooming in between 20%
|
`width_factor=(-0.3, -0.2)` result in an output zooming in between 20%
|
||||||
to 30%.
|
to 30%. Defaults to `None`, i.e., zooming vertical and horizontal
|
||||||
|
directions by preserving the aspect ratio.
|
||||||
fill_mode: Points outside the boundaries of the input are filled according
|
fill_mode: Points outside the boundaries of the input are filled according
|
||||||
to the given mode (one of `{'constant', 'reflect', 'wrap'}`).
|
to the given mode (one of `{'constant', 'reflect', 'wrap'}`).
|
||||||
- *reflect*: `(d c b a | a b c d | d c b a)`
|
- *reflect*: `(d c b a | a b c d | d c b a)`
|
||||||
@ -860,6 +862,14 @@ class RandomZoom(Layer):
|
|||||||
seed: Integer. Used to create a random seed.
|
seed: Integer. Used to create a random seed.
|
||||||
name: A string, the name of the layer.
|
name: A string, the name of the layer.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
>>> input_img = np.random.random((32, 224, 224, 3))
|
||||||
|
>>> layer = tf.keras.layers.experimental.preprocessing.RandomZoom(.5, .2)
|
||||||
|
>>> out_img = layer(input_img)
|
||||||
|
>>> out_img.shape
|
||||||
|
TensorShape([32, 224, 224, 3])
|
||||||
|
|
||||||
Input shape:
|
Input shape:
|
||||||
4D tensor with shape:
|
4D tensor with shape:
|
||||||
`(samples, height, width, channels)`, data_format='channels_last'.
|
`(samples, height, width, channels)`, data_format='channels_last'.
|
||||||
@ -873,9 +883,10 @@ class RandomZoom(Layer):
|
|||||||
negative.
|
negative.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
# TODO(b/156526279): Add `fill_value` argument.
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
height_factor,
|
height_factor,
|
||||||
width_factor,
|
width_factor=None,
|
||||||
fill_mode='reflect',
|
fill_mode='reflect',
|
||||||
interpolation='bilinear',
|
interpolation='bilinear',
|
||||||
seed=None,
|
seed=None,
|
||||||
@ -894,16 +905,17 @@ class RandomZoom(Layer):
|
|||||||
'got {}'.format(height_factor))
|
'got {}'.format(height_factor))
|
||||||
|
|
||||||
self.width_factor = width_factor
|
self.width_factor = width_factor
|
||||||
if isinstance(width_factor, (tuple, list)):
|
if width_factor is not None:
|
||||||
self.width_lower = width_factor[0]
|
if isinstance(width_factor, (tuple, list)):
|
||||||
self.width_upper = width_factor[1]
|
self.width_lower = width_factor[0]
|
||||||
else:
|
self.width_upper = width_factor[1]
|
||||||
self.width_lower = -width_factor
|
else:
|
||||||
self.width_upper = width_factor
|
self.width_lower = -width_factor # pylint: disable=invalid-unary-operand-type
|
||||||
|
self.width_upper = width_factor
|
||||||
|
|
||||||
if self.width_lower < -1. or self.width_upper < -1.:
|
if self.width_lower < -1. or self.width_upper < -1.:
|
||||||
raise ValueError('`width_factor` must have values larger than -1, '
|
raise ValueError('`width_factor` must have values larger than -1, '
|
||||||
'got {}'.format(width_factor))
|
'got {}'.format(width_factor))
|
||||||
|
|
||||||
check_fill_mode_and_interpolation(fill_mode, interpolation)
|
check_fill_mode_and_interpolation(fill_mode, interpolation)
|
||||||
|
|
||||||
@ -928,10 +940,13 @@ class RandomZoom(Layer):
|
|||||||
shape=[batch_size, 1],
|
shape=[batch_size, 1],
|
||||||
minval=1. + self.height_lower,
|
minval=1. + self.height_lower,
|
||||||
maxval=1. + self.height_upper)
|
maxval=1. + self.height_upper)
|
||||||
width_zoom = self._rng.uniform(
|
if self.width_factor is not None:
|
||||||
shape=[batch_size, 1],
|
width_zoom = self._rng.uniform(
|
||||||
minval=1. + self.width_lower,
|
shape=[batch_size, 1],
|
||||||
maxval=1. + self.width_upper)
|
minval=1. + self.width_lower,
|
||||||
|
maxval=1. + self.width_upper)
|
||||||
|
else:
|
||||||
|
width_zoom = height_zoom
|
||||||
zooms = math_ops.cast(
|
zooms = math_ops.cast(
|
||||||
array_ops.concat([width_zoom, height_zoom], axis=1),
|
array_ops.concat([width_zoom, height_zoom], axis=1),
|
||||||
dtype=dtypes.float32)
|
dtype=dtypes.float32)
|
||||||
|
@ -1021,7 +1021,27 @@ class RandomZoomTest(keras_parameterized.TestCase):
|
|||||||
for dtype in (np.int64, np.float32):
|
for dtype in (np.int64, np.float32):
|
||||||
with tf_test_util.use_gpu():
|
with tf_test_util.use_gpu():
|
||||||
input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(dtype)
|
input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(dtype)
|
||||||
layer = image_preprocessing.RandomZoom((.5, .5), (.5, .5),
|
layer = image_preprocessing.RandomZoom((.5, .5), (.8, .8),
|
||||||
|
fill_mode='constant',
|
||||||
|
interpolation='nearest')
|
||||||
|
output_image = layer(np.expand_dims(input_image, axis=0))
|
||||||
|
# pyformat: disable
|
||||||
|
expected_output = np.asarray([
|
||||||
|
[0, 0, 0, 0, 0],
|
||||||
|
[0, 5, 7, 9, 0],
|
||||||
|
[0, 10, 12, 14, 0],
|
||||||
|
[0, 20, 22, 24, 0],
|
||||||
|
[0, 0, 0, 0, 0]
|
||||||
|
]).astype(dtype)
|
||||||
|
# pyformat: enable
|
||||||
|
expected_output = np.reshape(expected_output, (1, 5, 5, 1))
|
||||||
|
self.assertAllEqual(expected_output, output_image)
|
||||||
|
|
||||||
|
def test_random_zoom_out_numeric_preserve_aspect_ratio(self):
|
||||||
|
for dtype in (np.int64, np.float32):
|
||||||
|
with tf_test_util.use_gpu():
|
||||||
|
input_image = np.reshape(np.arange(0, 25), (5, 5, 1)).astype(dtype)
|
||||||
|
layer = image_preprocessing.RandomZoom((.5, .5),
|
||||||
fill_mode='constant',
|
fill_mode='constant',
|
||||||
interpolation='nearest')
|
interpolation='nearest')
|
||||||
output_image = layer(np.expand_dims(input_image, axis=0))
|
output_image = layer(np.expand_dims(input_image, axis=0))
|
||||||
|
@ -0,0 +1,218 @@
|
|||||||
|
path: "tensorflow.keras.layers.experimental.preprocessing.RandomZoom"
|
||||||
|
tf_class {
|
||||||
|
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.image_preprocessing.RandomZoom\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||||
|
is_instance: "<type \'object\'>"
|
||||||
|
member {
|
||||||
|
name: "activity_regularizer"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "dtype"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "dynamic"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "inbound_nodes"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input_mask"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input_shape"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input_spec"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "losses"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "metrics"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "name"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "name_scope"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "non_trainable_variables"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "non_trainable_weights"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "outbound_nodes"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "output"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "output_mask"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "output_shape"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "stateful"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "submodules"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "trainable"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "trainable_variables"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "trainable_weights"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "updates"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "variables"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "weights"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "__init__"
|
||||||
|
argspec: "args=[\'self\', \'height_factor\', \'width_factor\', \'fill_mode\', \'interpolation\', \'seed\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'reflect\', \'bilinear\', \'None\', \'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_loss"
|
||||||
|
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_metric"
|
||||||
|
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_update"
|
||||||
|
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_variable"
|
||||||
|
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_weight"
|
||||||
|
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "apply"
|
||||||
|
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "build"
|
||||||
|
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "call"
|
||||||
|
argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "compute_mask"
|
||||||
|
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "compute_output_shape"
|
||||||
|
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "compute_output_signature"
|
||||||
|
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "count_params"
|
||||||
|
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "from_config"
|
||||||
|
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_config"
|
||||||
|
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_input_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_input_mask_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_input_shape_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_losses_for"
|
||||||
|
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_output_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_output_mask_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_output_shape_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_updates_for"
|
||||||
|
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_weights"
|
||||||
|
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "set_weights"
|
||||||
|
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "with_name_scope"
|
||||||
|
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
}
|
@ -44,6 +44,10 @@ tf_module {
|
|||||||
name: "RandomWidth"
|
name: "RandomWidth"
|
||||||
mtype: "<type \'type\'>"
|
mtype: "<type \'type\'>"
|
||||||
}
|
}
|
||||||
|
member {
|
||||||
|
name: "RandomZoom"
|
||||||
|
mtype: "<type \'type\'>"
|
||||||
|
}
|
||||||
member {
|
member {
|
||||||
name: "Rescaling"
|
name: "Rescaling"
|
||||||
mtype: "<type \'type\'>"
|
mtype: "<type \'type\'>"
|
||||||
|
@ -0,0 +1,218 @@
|
|||||||
|
path: "tensorflow.keras.layers.experimental.preprocessing.RandomZoom"
|
||||||
|
tf_class {
|
||||||
|
is_instance: "<class \'tensorflow.python.keras.layers.preprocessing.image_preprocessing.RandomZoom\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.keras.engine.base_layer.Layer\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.module.module.Module\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.training.tracking.tracking.AutoTrackable\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.training.tracking.base.Trackable\'>"
|
||||||
|
is_instance: "<class \'tensorflow.python.keras.utils.version_utils.LayerVersionSelector\'>"
|
||||||
|
is_instance: "<type \'object\'>"
|
||||||
|
member {
|
||||||
|
name: "activity_regularizer"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "dtype"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "dynamic"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "inbound_nodes"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input_mask"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input_shape"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "input_spec"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "losses"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "metrics"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "name"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "name_scope"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "non_trainable_variables"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "non_trainable_weights"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "outbound_nodes"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "output"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "output_mask"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "output_shape"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "stateful"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "submodules"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "trainable"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "trainable_variables"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "trainable_weights"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "updates"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "variables"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member {
|
||||||
|
name: "weights"
|
||||||
|
mtype: "<type \'property\'>"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "__init__"
|
||||||
|
argspec: "args=[\'self\', \'height_factor\', \'width_factor\', \'fill_mode\', \'interpolation\', \'seed\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'reflect\', \'bilinear\', \'None\', \'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_loss"
|
||||||
|
argspec: "args=[\'self\', \'losses\'], varargs=None, keywords=kwargs, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_metric"
|
||||||
|
argspec: "args=[\'self\', \'value\', \'name\'], varargs=None, keywords=kwargs, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_update"
|
||||||
|
argspec: "args=[\'self\', \'updates\', \'inputs\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_variable"
|
||||||
|
argspec: "args=[\'self\'], varargs=args, keywords=kwargs, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "add_weight"
|
||||||
|
argspec: "args=[\'self\', \'name\', \'shape\', \'dtype\', \'initializer\', \'regularizer\', \'trainable\', \'constraint\', \'partitioner\', \'use_resource\', \'synchronization\', \'aggregation\'], varargs=None, keywords=kwargs, defaults=[\'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'None\', \'VariableSynchronization.AUTO\', \'VariableAggregation.NONE\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "apply"
|
||||||
|
argspec: "args=[\'self\', \'inputs\'], varargs=args, keywords=kwargs, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "build"
|
||||||
|
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "call"
|
||||||
|
argspec: "args=[\'self\', \'inputs\', \'training\'], varargs=None, keywords=None, defaults=[\'True\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "compute_mask"
|
||||||
|
argspec: "args=[\'self\', \'inputs\', \'mask\'], varargs=None, keywords=None, defaults=[\'None\'], "
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "compute_output_shape"
|
||||||
|
argspec: "args=[\'self\', \'input_shape\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "compute_output_signature"
|
||||||
|
argspec: "args=[\'self\', \'input_signature\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "count_params"
|
||||||
|
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "from_config"
|
||||||
|
argspec: "args=[\'cls\', \'config\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_config"
|
||||||
|
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_input_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_input_mask_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_input_shape_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_losses_for"
|
||||||
|
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_output_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_output_mask_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_output_shape_at"
|
||||||
|
argspec: "args=[\'self\', \'node_index\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_updates_for"
|
||||||
|
argspec: "args=[\'self\', \'inputs\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "get_weights"
|
||||||
|
argspec: "args=[\'self\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "set_weights"
|
||||||
|
argspec: "args=[\'self\', \'weights\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
member_method {
|
||||||
|
name: "with_name_scope"
|
||||||
|
argspec: "args=[\'cls\', \'method\'], varargs=None, keywords=None, defaults=None"
|
||||||
|
}
|
||||||
|
}
|
@ -44,6 +44,10 @@ tf_module {
|
|||||||
name: "RandomWidth"
|
name: "RandomWidth"
|
||||||
mtype: "<type \'type\'>"
|
mtype: "<type \'type\'>"
|
||||||
}
|
}
|
||||||
|
member {
|
||||||
|
name: "RandomZoom"
|
||||||
|
mtype: "<type \'type\'>"
|
||||||
|
}
|
||||||
member {
|
member {
|
||||||
name: "Rescaling"
|
name: "Rescaling"
|
||||||
mtype: "<type \'type\'>"
|
mtype: "<type \'type\'>"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user