Move distribute.py, distribution_strategy_context.py, and device_util.py

from training/ to distribute/.

PiperOrigin-RevId: 222761376
This commit is contained in:
A. Unique TensorFlower 2018-11-25 18:01:45 -08:00 committed by TensorFlower Gardener
parent b8ac6cb249
commit e14e62133c
36 changed files with 2118 additions and 2023 deletions

View File

@ -27,13 +27,13 @@ cuda_py_test(
"//tensorflow/core:protos_all_py",
"//tensorflow/python:array_ops",
"//tensorflow/python:constant_op",
"//tensorflow/python:device_util",
"//tensorflow/python:errors",
"//tensorflow/python:framework_ops",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:training",
"//tensorflow/python:variable_scope",
"//tensorflow/python/data/ops:dataset_ops",
"//tensorflow/python/distribute:device_util",
"//tensorflow/python/distribute:values",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:test",
@ -49,7 +49,7 @@ py_library(
srcs = ["mirrored_strategy.py"],
visibility = ["//tensorflow:internal"],
deps = [
"//tensorflow/python:distribute",
"//tensorflow/python/distribute:distribute_lib",
"//tensorflow/python/distribute:mirrored_strategy",
"//tensorflow/python/distribute:values",
],
@ -114,10 +114,10 @@ py_library(
visibility = ["//tensorflow:internal"],
deps = [
"//tensorflow/python:array_ops",
"//tensorflow/python:distribute",
"//tensorflow/python:dtypes",
"//tensorflow/python:framework_ops",
"//tensorflow/python:math_ops",
"//tensorflow/python/distribute:distribute_lib",
"//tensorflow/python/distribute:reduce_util",
"//tensorflow/python/distribute:values",
"//tensorflow/python/eager:context",
@ -156,11 +156,11 @@ py_library(
"//tensorflow/core:protos_all_py",
"//tensorflow/python:array_ops",
"//tensorflow/python:constant_op",
"//tensorflow/python:distribute",
"//tensorflow/python:framework_ops",
"//tensorflow/python:layers",
"//tensorflow/python:training",
"//tensorflow/python:variables",
"//tensorflow/python/distribute:distribute_lib",
"//tensorflow/python/eager:backprop",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:test",
@ -181,10 +181,10 @@ py_library(
":tpu_strategy",
"//tensorflow/contrib/cluster_resolver:cluster_resolver_pip",
"//tensorflow/contrib/optimizer_v2:training",
"//tensorflow/python:distribute",
"//tensorflow/python:framework_ops",
"//tensorflow/python:training",
"//tensorflow/python:util",
"//tensorflow/python/distribute:distribute_lib",
"//tensorflow/python/eager:context",
"@absl_py//absl/testing:parameterized",
],
@ -229,11 +229,11 @@ cuda_py_test(
"//tensorflow/core:protos_all_py",
"//tensorflow/python:array_ops",
"//tensorflow/python:constant_op",
"//tensorflow/python:distribute",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:layers",
"//tensorflow/python:state_ops",
"//tensorflow/python:variable_scope",
"//tensorflow/python/distribute:distribute_lib",
"//tensorflow/python/distribute:values",
"//tensorflow/python/eager:context",
"//tensorflow/python/eager:test",

View File

@ -24,6 +24,7 @@ from tensorflow.contrib.distribute.python import mirrored_strategy
from tensorflow.core.protobuf import rewriter_config_pb2
from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib
from tensorflow.python.distribute import cross_device_utils
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import multi_worker_util
from tensorflow.python.distribute import values
from tensorflow.python.eager import context
@ -31,7 +32,6 @@ from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import collective_ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import distribute as distribute_lib
# TODO(yuefengz): support in-graph replication.

View File

@ -53,11 +53,11 @@ from tensorflow.contrib.distribute.python import tpu_strategy as tpu_lib
from tensorflow.contrib.optimizer_v2 import adagrad as adagrad_v2
from tensorflow.contrib.optimizer_v2 import adam as adam_v2
from tensorflow.contrib.optimizer_v2 import gradient_descent as gradient_descent_v2
from tensorflow.python.distribute import distribution_strategy_context
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.training import adagrad
from tensorflow.python.training import adam
from tensorflow.python.training import distribution_strategy_context
from tensorflow.python.training import gradient_descent
from tensorflow.python.training import rmsprop
from tensorflow.python.util import tf_inspect

View File

@ -29,6 +29,7 @@ from tensorflow.contrib.distribute.python import multi_worker_test_base
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib
from tensorflow.python.distribute import cross_device_utils
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import values as value_lib
from tensorflow.python.eager import context
@ -37,7 +38,6 @@ from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.training import device_util
def _make_per_replica(values, devices, regroup=False):

View File

@ -22,13 +22,13 @@ from absl.testing import parameterized
from tensorflow.contrib.distribute.python import combinations
from tensorflow.python.distribute import cross_device_utils
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import values as value_lib
from tensorflow.python.eager import test
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import ops
from tensorflow.python.framework import test_util
from tensorflow.python.ops import math_ops
from tensorflow.python.training import device_util
class IndexedSlicesUtilsTest(test.TestCase, parameterized.TestCase):

View File

@ -28,6 +28,7 @@ from tensorflow.contrib.distribute.python import combinations
from tensorflow.core.protobuf import config_pb2
from tensorflow.python import keras
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import distribution_strategy_context as ds_context
from tensorflow.python.estimator import run_config
from tensorflow.python.estimator import training
from tensorflow.python.estimator.canned import dnn_linear_combined
@ -46,7 +47,6 @@ from tensorflow.python.ops import variables
from tensorflow.python.platform import gfile
from tensorflow.python.platform import test
from tensorflow.python.summary.writer import writer_cache
from tensorflow.python.training import distribution_strategy_context as ds_context
class KerasOptimizerV2IntegrationTest(test.TestCase, parameterized.TestCase):

View File

@ -20,9 +20,9 @@ from __future__ import print_function
import functools
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import mirrored_strategy
from tensorflow.python.distribute import values
from tensorflow.python.training import distribute as distribute_lib
# pylint: disable=protected-access,invalid-name

View File

@ -29,6 +29,8 @@ from tensorflow.contrib.distribute.python import multi_worker_test_base
from tensorflow.contrib.distribute.python import strategy_test_lib
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribution_strategy_context as ds_context
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import values
from tensorflow.python.eager import backprop
@ -48,8 +50,6 @@ from tensorflow.python.ops import rnn_cell_impl
from tensorflow.python.ops import state_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.training import device_util
from tensorflow.python.training import distribution_strategy_context as ds_context
from tensorflow.python.training import gradient_descent
from tensorflow.python.training import optimizer as optimizer_lib
from tensorflow.python.training import server_lib

View File

@ -20,13 +20,13 @@ from __future__ import print_function
import six
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import values
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.util import nest

View File

@ -22,6 +22,8 @@ import copy
from tensorflow.contrib.distribute.python import mirrored_strategy
from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import multi_worker_util
from tensorflow.python.distribute import values
from tensorflow.python.eager import context
@ -32,8 +34,6 @@ from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import device_setter
from tensorflow.python.training import device_util
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.util import nest
_LOCAL_CPU = "/device:CPU:0"

View File

@ -28,6 +28,8 @@ from tensorflow.contrib.distribute.python import parameter_server_strategy
from tensorflow.contrib.distribute.python import strategy_test_lib
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribution_strategy_context as ds_context
from tensorflow.python.distribute import multi_worker_util
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import values
@ -46,8 +48,6 @@ from tensorflow.python.ops import partitioned_variables
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.platform import test
from tensorflow.python.training import device_util
from tensorflow.python.training import distribution_strategy_context as ds_context
from tensorflow.python.training import training_util
CHIEF = run_config.TaskType.CHIEF

View File

@ -19,6 +19,7 @@ from __future__ import division
from __future__ import print_function
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.distribute import distribution_strategy_context as ds_context
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import values
from tensorflow.python.eager import backprop
@ -33,7 +34,6 @@ from tensorflow.python.ops import array_ops
from tensorflow.python.ops import init_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables
from tensorflow.python.training import distribution_strategy_context as ds_context
from tensorflow.python.training import optimizer

View File

@ -29,6 +29,8 @@ from tensorflow.contrib.tpu.python.tpu import tpu
from tensorflow.contrib.tpu.python.tpu import tpu_system_metadata as tpu_system_metadata_lib
from tensorflow.contrib.tpu.python.tpu import training_loop
from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import values
from tensorflow.python.eager import context
@ -41,8 +43,6 @@ from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.training import device_util
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.util import nest

View File

@ -25,6 +25,8 @@ from tensorflow.contrib.distribute.python import combinations
from tensorflow.contrib.distribute.python import multi_worker_test_base
from tensorflow.core.protobuf import config_pb2
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import values
from tensorflow.python.eager import context
from tensorflow.python.eager import test
@ -39,8 +41,6 @@ from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import random_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.ops import variables as variables_lib
from tensorflow.python.training import device_util
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.training import saver as saver_lib
from tensorflow.python.util import nest

View File

@ -3596,9 +3596,7 @@ py_library(
srcs = ["training/device_util.py"],
srcs_version = "PY2AND3",
deps = [
":device",
":framework_ops",
"//tensorflow/python/eager:context",
"//tensorflow/python/distribute:device_util",
],
)
@ -3610,35 +3608,7 @@ py_library(
],
srcs_version = "PY2AND3",
deps = [
":array_ops",
":constant_op",
":control_flow_ops",
":device_util",
":dtypes",
":framework_ops",
":platform",
":resource_variable_ops",
":state_ops",
":util",
":variable_scope",
"//tensorflow/python/data",
"//tensorflow/python/distribute:reduce_util",
"//tensorflow/python/ops/losses",
"//tensorflow/tools/docs:doc_controls",
],
)
py_test(
name = "distribute_test",
size = "small",
srcs = ["training/distribute_test.py"],
srcs_version = "PY2AND3",
deps = [
":client_testlib",
":constant_op",
":distribute",
":dtypes",
":variable_scope",
"//tensorflow/python/distribute:distribute_lib",
],
)
@ -4627,7 +4597,6 @@ cuda_py_tests(
"training/basic_loops_test.py",
"training/coordinator_test.py",
"training/device_setter_test.py",
"training/device_util_test.py",
"training/ftrl_test.py",
"training/gradient_descent_test.py",
"training/learning_rate_decay_test.py",

View File

@ -50,6 +50,7 @@ py_library(
srcs_version = "PY2AND3",
deps = [
":cross_device_utils",
":device_util",
":reduce_util",
":values",
"//tensorflow/python:array_ops",
@ -58,8 +59,6 @@ py_library(
"//tensorflow/python:math_ops",
"//tensorflow/python:platform",
"//tensorflow/python:resource_variable_ops",
"//tensorflow/python:training",
"//tensorflow/python:variable_scope",
"//tensorflow/python/eager:context",
"@six_archive//:six",
],
@ -83,6 +82,67 @@ py_library(
],
)
py_library(
name = "device_util",
srcs = ["device_util.py"],
srcs_version = "PY2AND3",
deps = [
"//tensorflow/python:device",
"//tensorflow/python:framework_ops",
"//tensorflow/python/eager:context",
],
)
cuda_py_test(
name = "device_util_test",
srcs = ["device_util_test.py"],
additional_deps = [
":device_util",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework_ops",
],
)
py_library(
name = "distribute_lib",
srcs = [
"distribute_lib.py",
"distribution_strategy_context.py",
],
srcs_version = "PY2AND3",
deps = [
":device_util",
":reduce_util",
"//tensorflow/python:array_ops",
"//tensorflow/python:constant_op",
"//tensorflow/python:control_flow_ops",
"//tensorflow/python:dtypes",
"//tensorflow/python:framework_ops",
"//tensorflow/python:platform",
"//tensorflow/python:resource_variable_ops",
"//tensorflow/python:state_ops",
"//tensorflow/python:util",
"//tensorflow/python:variable_scope",
"//tensorflow/python/data",
"//tensorflow/python/ops/losses",
"//tensorflow/tools/docs:doc_controls",
],
)
py_test(
name = "distribute_lib_test",
size = "small",
srcs = ["distribute_lib_test.py"],
srcs_version = "PY2AND3",
deps = [
":distribute_lib",
"//tensorflow/python:client_testlib",
"//tensorflow/python:constant_op",
"//tensorflow/python:dtypes",
"//tensorflow/python:variable_scope",
],
)
py_library(
name = "distribute_config",
srcs = [
@ -144,6 +204,8 @@ py_library(
srcs = ["mirrored_strategy.py"],
deps = [
":cross_device_ops",
":device_util",
":distribute_lib",
":multi_worker_util",
":reduce_util",
":shared_variable_creator",
@ -153,8 +215,6 @@ py_library(
"//tensorflow/python:constant_op",
"//tensorflow/python:control_flow_ops",
"//tensorflow/python:device",
"//tensorflow/python:device_util",
"//tensorflow/python:distribute",
"//tensorflow/python:dtypes",
"//tensorflow/python:framework_ops",
"//tensorflow/python:pywrap_tensorflow",
@ -195,12 +255,12 @@ cuda_py_test(
additional_deps = [
":input_ops",
"//tensorflow/python/data/ops:dataset_ops",
"//tensorflow/python/data/ops:readers",
"//tensorflow/python:errors",
"//tensorflow/python:client_testlib",
"//tensorflow/python:framework_ops",
"//tensorflow/python:framework_test_lib",
"//tensorflow/python:io_ops",
"//tensorflow/python/data/ops:readers",
"//tensorflow/python:util",
],
tags = [
@ -271,11 +331,11 @@ py_library(
name = "values",
srcs = ["values.py"],
deps = [
":device_util",
":distribute_lib",
":input_ops",
"//tensorflow/python:array_ops",
"//tensorflow/python:control_flow_ops",
"//tensorflow/python:device_util",
"//tensorflow/python:distribute",
"//tensorflow/python:framework_ops",
"//tensorflow/python:resource_variable_ops",
"//tensorflow/python:training",

View File

@ -23,6 +23,7 @@ import six
from tensorflow.python.client import device_lib
from tensorflow.python.distribute import cross_device_utils
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import values as value_lib
from tensorflow.python.eager import context
@ -31,7 +32,6 @@ from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import resource_variable_ops
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.training import device_util
def check_destinations(destinations):

View File

@ -0,0 +1,97 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Device-related support functions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import context
from tensorflow.python.framework import device as tf_device
from tensorflow.python.framework import ops
def canonicalize(d, default=None):
"""Canonicalize device string.
If d has missing components, the rest would be deduced from the `default`
argument or from '/replica:0/task:0/device:CPU:0'. For example:
If d = '/cpu:0', default='/job:worker/task:1', it returns
'/job:worker/replica:0/task:1/device:CPU:0'.
If d = '/cpu:0', default='/job:worker', it returns
'/job:worker/replica:0/task:0/device:CPU:0'.
If d = '/gpu:0', default=None, it returns
'/replica:0/task:0/device:GPU:0'.
Note: This uses "job:localhost" as the default if executing eagerly.
Args:
d: a device string.
default: a string for default device if d doesn't have all components.
Returns:
a canonicalized device string.
"""
d = tf_device.DeviceSpec.from_string(d)
assert d.device_type is None or d.device_type == d.device_type.upper(), (
"Device type '%s' must be all-caps." % (d.device_type,))
# Fill in missing device fields using defaults.
result = tf_device.DeviceSpec(
replica=0, task=0, device_type="CPU", device_index=0)
if context.executing_eagerly():
result.job = "localhost"
if default:
result.merge_from(tf_device.DeviceSpec.from_string(default))
result.merge_from(d)
return result.to_string()
def resolve(d):
"""Canonicalize `d` with current device as default."""
return canonicalize(d, default=current())
class _FakeNodeDef(object):
"""A fake NodeDef for _FakeOperation."""
def __init__(self):
self.op = ""
self.name = ""
class _FakeOperation(object):
"""A fake Operation object to pass to device functions."""
def __init__(self):
self.device = ""
self.type = ""
self.name = ""
self.node_def = _FakeNodeDef()
def _set_device(self, device):
self.device = ops._device_string(device) # pylint: disable=protected-access
def current():
"""Return a string (not canonicalized) for the current device."""
# TODO(josh11b): Work out how this function interacts with ops.colocate_with.
ctx = context.context()
if ctx.executing_eagerly():
d = ctx.device_name
else:
op = _FakeOperation()
ops.get_default_graph()._apply_device_functions(op) # pylint: disable=protected-access
d = op.device
return d

View File

@ -18,10 +18,10 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.distribute import device_util
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from tensorflow.python.platform import test
from tensorflow.python.training import device_util
class DeviceUtilTest(test.TestCase):

File diff suppressed because it is too large Load Diff

View File

@ -18,12 +18,12 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import distribution_strategy_context
from tensorflow.python.framework import constant_op
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import variable_scope
from tensorflow.python.platform import test
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.training import distribution_strategy_context
class _TestReplicaContext(distribute_lib.ReplicaContext):

View File

@ -0,0 +1,236 @@
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility to get distribution strategy related contexts."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.util.lazy_loader import LazyLoader
from tensorflow.python.util.tf_export import tf_export
# There is a circular dependency between this and `distribute` module. So we
# load it lazily to workaround this.
distribute_lib = LazyLoader(
"distribute_lib", globals(),
"tensorflow.python.distribute.distribute_lib")
# ------------------------------------------------------------------------------
# Internal API for setting the current thread mode as being either in a
# replica or cross-replica context for a particular distribution strategy.
class _ThreadMode(object):
def __init__(self, dist, cross, replica):
self.distribution_strategy = dist
self.cross_replica_context = cross
self.replica_context = replica
class _CrossReplicaThreadMode(_ThreadMode):
def __init__(self, distribution_strategy):
_ThreadMode.__init__(
self, distribution_strategy, distribution_strategy, None)
class _InReplicaThreadMode(_ThreadMode):
def __init__(self, replica_ctx):
_ThreadMode.__init__(
self, replica_ctx.distribution_strategy, None, replica_ctx)
def _push_per_thread_mode(context):
ops.get_default_graph()._distribution_strategy_stack.append(context) # pylint: disable=protected-access
def _pop_per_thread_mode():
ops.get_default_graph()._distribution_strategy_stack.pop(-1) # pylint: disable=protected-access
class _DefaultReplicaThreadMode(_ThreadMode):
"""Type of default value returned by `_get_per_thread_mode()`.
Used when the thread-local stack is empty.
"""
def __init__(self):
_ThreadMode.__init__(self, _get_default_distribution_strategy(), None,
_get_default_replica_context())
def _get_per_thread_mode():
try:
return ops.get_default_graph()._distribution_strategy_stack[-1] # pylint: disable=protected-access
except (AttributeError, IndexError):
return _get_default_replica_mode()
# ------------------------------------------------------------------------------
# Public API for accessing the current thread mode
@tf_export("distribute.get_replica_context")
def get_replica_context():
"""Returns the current `tf.distribute.ReplicaContext` or `None`.
Returns `None` if in a cross-replica context.
Note that execution:
1. starts in the default (single-replica) replica context (this function
will return the default `ReplicaContext` object);
2. switches to cross-replica context (in which case this will return
`None`) when entering a `with tf.distribute.Strategy.scope():` block;
3. switches to a (non-default) replica context inside
`extended.call_for_each_replica(fn, ...)`;
4. if `fn` calls `get_replica_context().merge_call(merge_fn, ...)`, then
inside `merge_fn` you are back in the cross-replica context (and again
this function will return `None`).
Note that you can also go directly from step 1 to 4 to switch to a
cross-replica context for the default `tf.distribute.Strategy`. You may
also switch from the cross-replica context of 4 to a replica context by
calling `extended.call_for_each_replica()`, jumping back to step 3.
Most `tf.distribute.Strategy` methods may only be executed in
a cross-replica context, in a replica context you should use the
`ReplicaContext` API instead.
Returns:
The current `ReplicaContext` object when in a replica context scope,
else `None`.
Within a particular block, exactly one of these two things will be true:
* `get_replica_context()` returns non-`None`, or
* `tf.distribute.is_cross_replica_context()` returns True.
"""
return _get_per_thread_mode().replica_context
def get_cross_replica_context():
"""Returns the current tf.distribute.Strategy if in a cross-replica context.
DEPRECATED: Please use `in_cross_replica_context()` and
`get_distribution_strategy()` instead.
Note that execution:
1. starts in the default (single-replica) replica context;
2. switches to cross-replica context when entering a
`with tf.distribute.Strategy.scope():` block;
3. switches to a (non-default) replica context inside
`call_for_each_replica(fn, ...)`;
4. if `fn` calls `get_replica_context()->merge_call(merge_fn, ...)`, then
inside `merge_fn` you are back in the cross-replica context.
Note that you can also go directly from step 1 to 4 to switch to a
cross-replica context for the default `tf.distribute.Strategy`. You may
also switch from the cross-replica context of 4 to a replica context by
calling `call_for_each_replica()`, jumping back to step 3.
Most `tf.distribute.Strategy` methods may only be executed in
a cross-replica context.
Returns:
Returns the current `tf.distribute.Strategy` object in a cross-replica
context, or `None`.
Exactly one of `get_replica_context()` and `get_cross_replica_context()`
will return `None` in a particular block.
"""
return _get_per_thread_mode().cross_replica_context
@tf_export("distribute.in_cross_replica_context")
def in_cross_replica_context():
"""Returns True if in a cross-replica context.
See `tf.distribute.get_replica_context` for details.
Returns:
True if in a cross-replica context (`get_replica_context()` returns
`None`), or False if in a replica context (`get_replica_context()` returns
non-`None`).
"""
return _get_per_thread_mode().cross_replica_context is not None
@tf_export("distribute.get_strategy")
def get_distribution_strategy():
"""Returns the current `tf.distribute.Strategy` object.
Typically only used in a cross-replica context:
```
if tf.distribute.in_cross_replica_context():
strategy = tf.distribute.get_strategy()
...
```
Returns:
A `tf.distribute.Strategy` object. Inside a
`with distribution_strategy.scope()` block, it returns
`distribution_strategy`, otherwise it returns the default
(single-replica) `tf.distribute.Strategy` object.
"""
return _get_per_thread_mode().distribution_strategy
@tf_export("distribute.has_strategy")
def has_distribution_strategy():
"""Return if there is a current non-default `tf.distribute.Strategy`.
Returns:
True if inside a `with strategy.scope():`.
"""
return get_distribution_strategy() is not _get_default_distribution_strategy()
# ------------------------------------------------------------------------------
# Defaults that are used when no distribution strategy is explicitly created.
# We create them lazily in a function so that we can workaround the circular
# dependency on distribute_lib. See lazy loader at the top of this file.
_defaults = {
"distribution_strategy": None,
"replica_context": None,
"replica_mode": None
}
def _get_default_distribution_strategy():
if _defaults["distribution_strategy"] is None:
_defaults["distribution_strategy"] = (
distribute_lib._DefaultDistributionStrategy()) # pylint: disable=protected-access
return _defaults["distribution_strategy"]
def _get_default_replica_context():
if _defaults["replica_context"] is None:
_defaults["replica_context"] = distribute_lib.ReplicaContext(
_get_default_distribution_strategy(), replica_id_in_sync_group=0)
return _defaults["replica_context"]
def _get_default_replica_mode():
if _defaults["replica_mode"] is None:
_defaults["replica_mode"] = _DefaultReplicaThreadMode()
return _defaults["replica_mode"]

View File

@ -25,6 +25,8 @@ import threading
from tensorflow.python import pywrap_tensorflow
from tensorflow.python.distribute import cross_device_ops as cross_device_ops_lib
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import multi_worker_util
from tensorflow.python.distribute import reduce_util
from tensorflow.python.distribute import shared_variable_creator
@ -40,8 +42,6 @@ from tensorflow.python.ops import array_ops
from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import variable_scope
from tensorflow.python.training import coordinator
from tensorflow.python.training import device_util
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.util import nest

View File

@ -30,6 +30,9 @@ import six
from tensorflow.python.data.experimental.ops import batching
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.ops import multi_device_iterator_ops
from tensorflow.python.distribute import device_util
from tensorflow.python.distribute import distribute_lib
from tensorflow.python.distribute import distribution_strategy_context
from tensorflow.python.distribute import input_ops
from tensorflow.python.distribute import reduce_util
from tensorflow.python.eager import context
@ -42,9 +45,6 @@ from tensorflow.python.ops import control_flow_ops
from tensorflow.python.ops import gen_resource_variable_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope as vs
from tensorflow.python.training import device_util
from tensorflow.python.training import distribute as distribute_lib
from tensorflow.python.training import distribution_strategy_context
from tensorflow.python.training import saver
from tensorflow.python.training.checkpointable import base as checkpointable
from tensorflow.python.util import nest

View File

@ -37,7 +37,7 @@ _TENSORFLOW_DOC_SOURCES = {
'app': DocSource(docstring_module_name='platform.app'),
'bitwise': DocSource(docstring_module_name='ops.bitwise_ops'),
'compat': DocSource(docstring_module_name='util.compat'),
'distribute': DocSource(docstring_module_name='training.distribute'),
'distribute': DocSource(docstring_module_name='distribute.distribute_lib'),
'distributions': DocSource(
docstring_module_name='ops.distributions.distributions'),
'errors': DocSource(docstring_module_name='framework.errors'),

View File

@ -12,86 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Device-related support functions."""
"""Deprecated, please use ../distribute/device_util.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.eager import context
from tensorflow.python.framework import device as tf_device
from tensorflow.python.framework import ops
def canonicalize(d, default=None):
"""Canonicalize device string.
If d has missing components, the rest would be deduced from the `default`
argument or from '/replica:0/task:0/device:CPU:0'. For example:
If d = '/cpu:0', default='/job:worker/task:1', it returns
'/job:worker/replica:0/task:1/device:CPU:0'.
If d = '/cpu:0', default='/job:worker', it returns
'/job:worker/replica:0/task:0/device:CPU:0'.
If d = '/gpu:0', default=None, it returns
'/replica:0/task:0/device:GPU:0'.
Note: This uses "job:localhost" as the default if executing eagerly.
Args:
d: a device string.
default: a string for default device if d doesn't have all components.
Returns:
a canonicalized device string.
"""
d = tf_device.DeviceSpec.from_string(d)
assert d.device_type is None or d.device_type == d.device_type.upper(), (
"Device type '%s' must be all-caps." % (d.device_type,))
# Fill in missing device fields using defaults.
result = tf_device.DeviceSpec(
replica=0, task=0, device_type="CPU", device_index=0)
if context.executing_eagerly():
result.job = "localhost"
if default:
result.merge_from(tf_device.DeviceSpec.from_string(default))
result.merge_from(d)
return result.to_string()
def resolve(d):
"""Canonicalize `d` with current device as default."""
return canonicalize(d, default=current())
class _FakeNodeDef(object):
"""A fake NodeDef for _FakeOperation."""
def __init__(self):
self.op = ""
self.name = ""
class _FakeOperation(object):
"""A fake Operation object to pass to device functions."""
def __init__(self):
self.device = ""
self.type = ""
self.name = ""
self.node_def = _FakeNodeDef()
def _set_device(self, device):
self.device = ops._device_string(device) # pylint: disable=protected-access
def current():
"""Return a string (not canonicalized) for the current device."""
# TODO(josh11b): Work out how this function interacts with ops.colocate_with.
ctx = context.context()
if ctx.executing_eagerly():
d = ctx.device_name
else:
op = _FakeOperation()
ops.get_default_graph()._apply_device_functions(op) # pylint: disable=protected-access
d = op.device
return d
# pylint: disable=wildcard-import
from tensorflow.python.distribute.device_util import *

File diff suppressed because it is too large Load Diff

View File

@ -12,225 +12,11 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utility to get distribution strategy related contexts."""
"""Deprecated, please use ../distribute/distribution_strategy_context.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.framework import ops
from tensorflow.python.util.lazy_loader import LazyLoader
from tensorflow.python.util.tf_export import tf_export
# There is a circular dependency between this and `distribute` module. So we
# load it lazily to workaround this.
distribute_lib = LazyLoader(
"distribute_lib", globals(),
"tensorflow.python.training.distribute")
# ------------------------------------------------------------------------------
# Internal API for setting the current thread mode as being either in a
# replica or cross-replica context for a particular distribution strategy.
class _ThreadMode(object):
def __init__(self, dist, cross, replica):
self.distribution_strategy = dist
self.cross_replica_context = cross
self.replica_context = replica
class _CrossReplicaThreadMode(_ThreadMode):
def __init__(self, distribution_strategy):
_ThreadMode.__init__(
self, distribution_strategy, distribution_strategy, None)
class _InReplicaThreadMode(_ThreadMode):
def __init__(self, replica_ctx):
_ThreadMode.__init__(
self, replica_ctx.distribution_strategy, None, replica_ctx)
def _push_per_thread_mode(context):
ops.get_default_graph()._distribution_strategy_stack.append(context) # pylint: disable=protected-access
def _pop_per_thread_mode():
ops.get_default_graph()._distribution_strategy_stack.pop(-1) # pylint: disable=protected-access
class _DefaultReplicaThreadMode(_ThreadMode):
"""Type of default value returned by `_get_per_thread_mode()`.
Used when the thread-local stack is empty.
"""
def __init__(self):
_ThreadMode.__init__(self, _get_default_distribution_strategy(), None,
_get_default_replica_context())
def _get_per_thread_mode():
try:
return ops.get_default_graph()._distribution_strategy_stack[-1] # pylint: disable=protected-access
except (AttributeError, IndexError):
return _get_default_replica_mode()
# ------------------------------------------------------------------------------
# Public API for accessing the current thread mode
@tf_export("distribute.get_replica_context")
def get_replica_context():
"""Returns the current `tf.distribute.ReplicaContext` or `None`.
Returns `None` if in a cross-replica context.
Note that execution:
1. starts in the default (single-replica) replica context (this function
will return the default `ReplicaContext` object);
2. switches to cross-replica context (in which case this will return
`None`) when entering a `with tf.distribute.Strategy.scope():` block;
3. switches to a (non-default) replica context inside
`extended.call_for_each_replica(fn, ...)`;
4. if `fn` calls `get_replica_context().merge_call(merge_fn, ...)`, then
inside `merge_fn` you are back in the cross-replica context (and again
this function will return `None`).
Note that you can also go directly from step 1 to 4 to switch to a
cross-replica context for the default `tf.distribute.Strategy`. You may
also switch from the cross-replica context of 4 to a replica context by
calling `extended.call_for_each_replica()`, jumping back to step 3.
Most `tf.distribute.Strategy` methods may only be executed in
a cross-replica context, in a replica context you should use the
`ReplicaContext` API instead.
Returns:
The current `ReplicaContext` object when in a replica context scope,
else `None`.
Within a particular block, exactly one of these two things will be true:
* `get_replica_context()` returns non-`None`, or
* `tf.distribute.is_cross_replica_context()` returns True.
"""
return _get_per_thread_mode().replica_context
def get_cross_replica_context():
"""Returns the current tf.distribute.Strategy if in a cross-replica context.
DEPRECATED: Please use `in_cross_replica_context()` and
`get_distribution_strategy()` instead.
Note that execution:
1. starts in the default (single-replica) replica context;
2. switches to cross-replica context when entering a
`with tf.distribute.Strategy.scope():` block;
3. switches to a (non-default) replica context inside
`call_for_each_replica(fn, ...)`;
4. if `fn` calls `get_replica_context()->merge_call(merge_fn, ...)`, then
inside `merge_fn` you are back in the cross-replica context.
Note that you can also go directly from step 1 to 4 to switch to a
cross-replica context for the default `tf.distribute.Strategy`. You may
also switch from the cross-replica context of 4 to a replica context by
calling `call_for_each_replica()`, jumping back to step 3.
Most `tf.distribute.Strategy` methods may only be executed in
a cross-replica context.
Returns:
Returns the current `tf.distribute.Strategy` object in a cross-replica
context, or `None`.
Exactly one of `get_replica_context()` and `get_cross_replica_context()`
will return `None` in a particular block.
"""
return _get_per_thread_mode().cross_replica_context
@tf_export("distribute.in_cross_replica_context")
def in_cross_replica_context():
"""Returns True if in a cross-replica context.
See `tf.distribute.get_replica_context` for details.
Returns:
True if in a cross-replica context (`get_replica_context()` returns
`None`), or False if in a replica context (`get_replica_context()` returns
non-`None`).
"""
return _get_per_thread_mode().cross_replica_context is not None
@tf_export("distribute.get_strategy")
def get_distribution_strategy():
"""Returns the current `tf.distribute.Strategy` object.
Typically only used in a cross-replica context:
```
if tf.distribute.in_cross_replica_context():
strategy = tf.distribute.get_strategy()
...
```
Returns:
A `tf.distribute.Strategy` object. Inside a
`with distribution_strategy.scope()` block, it returns
`distribution_strategy`, otherwise it returns the default
(single-replica) `tf.distribute.Strategy` object.
"""
return _get_per_thread_mode().distribution_strategy
@tf_export("distribute.has_strategy")
def has_distribution_strategy():
"""Return if there is a current non-default `tf.distribute.Strategy`.
Returns:
True if inside a `with strategy.scope():`.
"""
return get_distribution_strategy() is not _get_default_distribution_strategy()
# ------------------------------------------------------------------------------
# Defaults that are used when no distribution strategy is explicitly created.
# We create them lazily in a function so that we can workaround the circular
# dependency on distribute_lib. See lazy loader at the top of this file.
_defaults = {
"distribution_strategy": None,
"replica_context": None,
"replica_mode": None
}
def _get_default_distribution_strategy():
if _defaults["distribution_strategy"] is None:
_defaults["distribution_strategy"] = (
distribute_lib._DefaultDistributionStrategy()) # pylint: disable=protected-access
return _defaults["distribution_strategy"]
def _get_default_replica_context():
if _defaults["replica_context"] is None:
_defaults["replica_context"] = distribute_lib.ReplicaContext(
_get_default_distribution_strategy(), replica_id_in_sync_group=0)
return _defaults["replica_context"]
def _get_default_replica_mode():
if _defaults["replica_mode"] is None:
_defaults["replica_mode"] = _DefaultReplicaThreadMode()
return _defaults["replica_mode"]
# pylint: disable=wildcard-import
from tensorflow.python.distribute.distribution_strategy_context import *

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.InputContext"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.InputContext\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.InputContext\'>"
is_instance: "<type \'object\'>"
member {
name: "input_pipeline_id"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.ReplicaContext"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.ReplicaContext\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.ReplicaContext\'>"
is_instance: "<type \'object\'>"
member {
name: "devices"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.StrategyExtended"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.DistributionStrategyExtended\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.DistributionStrategyExtended\'>"
is_instance: "<type \'object\'>"
member {
name: "experimental_between_graph"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.Strategy"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.DistributionStrategy\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.DistributionStrategy\'>"
is_instance: "<type \'object\'>"
member {
name: "between_graph"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.InputContext"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.InputContext\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.InputContext\'>"
is_instance: "<type \'object\'>"
member {
name: "input_pipeline_id"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.ReplicaContext"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.ReplicaContext\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.ReplicaContext\'>"
is_instance: "<type \'object\'>"
member {
name: "devices"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.StrategyExtended"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.DistributionStrategyExtended\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.DistributionStrategyExtended\'>"
is_instance: "<type \'object\'>"
member {
name: "experimental_between_graph"

View File

@ -1,6 +1,6 @@
path: "tensorflow.distribute.Strategy"
tf_class {
is_instance: "<class \'tensorflow.python.training.distribute.DistributionStrategy\'>"
is_instance: "<class \'tensorflow.python.distribute.distribute_lib.DistributionStrategy\'>"
is_instance: "<type \'object\'>"
member {
name: "between_graph"