Use persistent buffer in depthwise_conv and xtensa_hifimini/depthwise_conv.
PiperOrigin-RevId: 309830793 Change-Id: I5ee1ee93e3d85faf648ca8d4c938760f598bc8da
This commit is contained in:
parent
bff3eb21dd
commit
e03b0d0480
@ -35,7 +35,6 @@ constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
constexpr int kMaxChannels = 1024;
|
||||
|
||||
// Depthwise conv is quantized along dimension 3:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
@ -49,10 +48,8 @@ struct OpData {
|
||||
int output_shift;
|
||||
|
||||
// Per channel output multiplier and shift.
|
||||
// TODO(b/141139247): Allocate these dynamically when possible.
|
||||
int32_t per_channel_output_multiplier[kMaxChannels];
|
||||
int32_t per_channel_output_shift[kMaxChannels];
|
||||
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
int32_t output_activation_min;
|
||||
@ -84,20 +81,81 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||
|
||||
TF_LITE_ENSURE_STATUS(tflite::PopulateConvolutionQuantizationParams(
|
||||
return tflite::PopulateConvolutionQuantizationParams(
|
||||
context, input, filter, bias, output, params->activation,
|
||||
&data->output_multiplier, &data->output_shift,
|
||||
&data->output_activation_min, &data->output_activation_max,
|
||||
data->per_channel_output_multiplier,
|
||||
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels));
|
||||
reinterpret_cast<int*>(data->per_channel_output_shift), num_channels);
|
||||
}
|
||||
return kTfLiteOk;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
void* data = nullptr;
|
||||
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
|
||||
kTfLiteError) {
|
||||
return nullptr;
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||
OpData* data = static_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
|
||||
const TfLiteType data_type = input->type;
|
||||
int width = SizeOfDimension(input, 2);
|
||||
int height = SizeOfDimension(input, 1);
|
||||
int filter_width = SizeOfDimension(filter, 2);
|
||||
int filter_height = SizeOfDimension(filter, 1);
|
||||
|
||||
// Per channel quantization is only needed for int8 inference. For other
|
||||
// quantized types, only a single scale and zero point is needed.
|
||||
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||
// Dynimically allocate per-channel quantization parameters.
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&data->per_channel_output_multiplier)));
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&data->per_channel_output_shift)));
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
reinterpret_cast<TfLiteAffineQuantization*>(
|
||||
filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
TF_LITE_ENSURE(
|
||||
context, affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kDepthwiseConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
return CalculateOpData(context, node, params, width, height, filter_width,
|
||||
filter_height, data_type, data);
|
||||
}
|
||||
|
||||
void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, OpData* data,
|
||||
TfLiteDepthwiseConvParams* params, const OpData* data,
|
||||
const TfLiteTensor* input, const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* output) {
|
||||
float output_activation_min, output_activation_max;
|
||||
@ -125,8 +183,8 @@ void EvalFloat(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, OpData* data,
|
||||
const TfLiteTensor* input,
|
||||
TfLiteDepthwiseConvParams* params,
|
||||
const OpData* data, const TfLiteTensor* input,
|
||||
const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* output) {
|
||||
DepthwiseParams op_params;
|
||||
@ -155,7 +213,7 @@ void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, OpData* data,
|
||||
TfLiteDepthwiseConvParams* params, const OpData* data,
|
||||
const TfLiteTensor* input, const TfLiteTensor* filter,
|
||||
const TfLiteTensor* bias, TfLiteTensor* output) {
|
||||
const int32_t input_offset = -input->params.zero_point;
|
||||
@ -189,8 +247,12 @@ void EvalQuantized(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||
const OpData& data = *(static_cast<const OpData*>(node->user_data));
|
||||
|
||||
TfLiteTensor* output = GetOutput(context, node, kOutputTensor);
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
@ -198,37 +260,6 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
const TfLiteTensor* bias =
|
||||
(NumInputs(node) == 3) ? GetInput(context, node, kBiasTensor) : nullptr;
|
||||
|
||||
const TfLiteType data_type = input->type;
|
||||
int width = SizeOfDimension(input, 2);
|
||||
int height = SizeOfDimension(input, 1);
|
||||
int filter_width = SizeOfDimension(filter, 2);
|
||||
int filter_height = SizeOfDimension(filter, 1);
|
||||
|
||||
OpData data;
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
kTfLiteAffineQuantization);
|
||||
|
||||
const auto* affine_quantization =
|
||||
reinterpret_cast<TfLiteAffineQuantization*>(
|
||||
filter->quantization.params);
|
||||
TF_LITE_ENSURE(context, affine_quantization);
|
||||
TF_LITE_ENSURE(context, affine_quantization->scale);
|
||||
TF_LITE_ENSURE(context, affine_quantization->zero_point);
|
||||
TF_LITE_ENSURE(
|
||||
context, affine_quantization->scale->size == 1 ||
|
||||
affine_quantization->scale->size ==
|
||||
filter->dims->data[kDepthwiseConvQuantizedDimension]);
|
||||
TF_LITE_ENSURE_EQ(context, affine_quantization->scale->size,
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
|
||||
filter_width, filter_height, data_type,
|
||||
&data));
|
||||
|
||||
// TODO(aselle): Consider whether float conv and quantized conv should be
|
||||
// separate ops to avoid dispatch overhead here.
|
||||
switch (input->type) { // Already know in/out types are same.
|
||||
@ -253,9 +284,9 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
} // namespace depthwise_conv
|
||||
|
||||
TfLiteRegistration* Register_DEPTHWISE_CONV_2D() {
|
||||
static TfLiteRegistration r = {/*init=*/nullptr,
|
||||
static TfLiteRegistration r = {/*init=*/depthwise_conv::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/nullptr,
|
||||
/*prepare=*/depthwise_conv::Prepare,
|
||||
/*invoke=*/depthwise_conv::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
/*builtin_code=*/0,
|
||||
|
@ -40,8 +40,7 @@ inline void DepthwiseConvPerChannel(
|
||||
const int8* filter_data, const RuntimeShape& bias_shape,
|
||||
const int32* bias_data, const RuntimeShape& output_shape,
|
||||
int8* output_data) {
|
||||
// Get parameters.
|
||||
// TODO(b/141565753): Re-introduce ScopedProfilingLabel on Micro.
|
||||
// TODO(b/154032858): Investigate removing extra copies.
|
||||
const int stride_width = params.stride_width;
|
||||
const int stride_height = params.stride_height;
|
||||
const int dilation_width_factor = params.dilation_width_factor;
|
||||
@ -289,7 +288,6 @@ constexpr int kInputTensor = 0;
|
||||
constexpr int kFilterTensor = 1;
|
||||
constexpr int kBiasTensor = 2;
|
||||
constexpr int kOutputTensor = 0;
|
||||
constexpr int kMaxChannels = 32;
|
||||
|
||||
// Depthwise conv is quantized along dimension 3:
|
||||
// https://www.tensorflow.org/lite/performance/quantization_spec
|
||||
@ -304,8 +302,8 @@ struct OpData {
|
||||
|
||||
// Per channel output multiplier and shift.
|
||||
// TODO(b/141139247): Allocate these dynamically when possible.
|
||||
int32_t per_channel_output_multiplier[kMaxChannels];
|
||||
int32_t per_channel_output_shift[kMaxChannels];
|
||||
int32_t* per_channel_output_multiplier;
|
||||
int32_t* per_channel_output_shift;
|
||||
|
||||
// The range of the fused activation layer. For example for kNone and
|
||||
// uint8_t these would be 0 and 255.
|
||||
@ -313,12 +311,6 @@ struct OpData {
|
||||
int32_t output_activation_max;
|
||||
};
|
||||
|
||||
// These constants represent constants specific to the music detect model.
|
||||
// They exist until (b/132070898) is fixed.
|
||||
static const int kMaxOpDataSize = 6;
|
||||
static int op_data_counter = 0;
|
||||
static OpData kStaticOpData[kMaxOpDataSize];
|
||||
|
||||
TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
TfLiteDepthwiseConvParams* params, int width,
|
||||
int height, int filter_width, int filter_height,
|
||||
@ -358,19 +350,26 @@ TfLiteStatus CalculateOpData(TfLiteContext* context, TfLiteNode* node,
|
||||
|
||||
} // namespace
|
||||
|
||||
void Free(TfLiteContext* context, void* buffer) { op_data_counter = 0; }
|
||||
void* Init(TfLiteContext* context, const char* buffer, size_t length) {
|
||||
TFLITE_DCHECK(context->AllocatePersistentBuffer != nullptr);
|
||||
void* data = nullptr;
|
||||
if (context->AllocatePersistentBuffer(context, sizeof(OpData), &data) ==
|
||||
kTfLiteError) {
|
||||
return nullptr;
|
||||
}
|
||||
return data;
|
||||
}
|
||||
|
||||
TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||
|
||||
const TfLiteTensor* input = GetInput(context, node, kInputTensor);
|
||||
const TfLiteTensor* filter = GetInput(context, node, kFilterTensor);
|
||||
|
||||
// TODO(b/132070898): Use statically slotted OpData structures until a
|
||||
// scratch memory API is ready.
|
||||
OpData* op_data = &kStaticOpData[op_data_counter++];
|
||||
node->user_data = op_data;
|
||||
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||
|
||||
const TfLiteType data_type = input->type;
|
||||
int width = SizeOfDimension(input, 2);
|
||||
@ -378,6 +377,17 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
int filter_width = SizeOfDimension(filter, 2);
|
||||
int filter_height = SizeOfDimension(filter, 1);
|
||||
|
||||
// Per channel quantization is only needed for int8 inference. For other
|
||||
// quantized types, only a single scale and zero point is needed.
|
||||
const int num_channels = filter->dims->data[kDepthwiseConvQuantizedDimension];
|
||||
// Dynimically allocate per-channel quantization parameters.
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&op_data->per_channel_output_multiplier)));
|
||||
TF_LITE_ENSURE_STATUS(context->AllocatePersistentBuffer(
|
||||
context, num_channels * sizeof(int32_t),
|
||||
reinterpret_cast<void**>(&op_data->per_channel_output_shift)));
|
||||
|
||||
// All per-channel quantized tensors need valid zero point and scale arrays.
|
||||
if (input->type == kTfLiteInt8) {
|
||||
TF_LITE_ENSURE_EQ(context, filter->quantization.type,
|
||||
@ -397,10 +407,8 @@ TfLiteStatus Prepare(TfLiteContext* context, TfLiteNode* node) {
|
||||
affine_quantization->zero_point->size);
|
||||
}
|
||||
|
||||
TF_LITE_ENSURE_STATUS(CalculateOpData(context, node, params, width, height,
|
||||
filter_width, filter_height, data_type,
|
||||
op_data));
|
||||
return kTfLiteOk;
|
||||
return CalculateOpData(context, node, params, width, height, filter_width,
|
||||
filter_height, data_type, op_data);
|
||||
}
|
||||
|
||||
void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
@ -434,6 +442,8 @@ void EvalQuantizedPerChannel(TfLiteContext* context, TfLiteNode* node,
|
||||
}
|
||||
|
||||
TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
TFLITE_DCHECK(node->user_data != nullptr);
|
||||
TFLITE_DCHECK(node->builtin_data != nullptr);
|
||||
auto* params =
|
||||
reinterpret_cast<TfLiteDepthwiseConvParams*>(node->builtin_data);
|
||||
auto* op_data = reinterpret_cast<OpData*>(node->user_data);
|
||||
@ -477,8 +487,8 @@ TfLiteStatus Eval(TfLiteContext* context, TfLiteNode* node) {
|
||||
} // namespace depthwise_conv
|
||||
|
||||
TfLiteRegistration* Register_DEPTHWISE_CONV_2D() {
|
||||
static TfLiteRegistration r = {/*init=*/nullptr,
|
||||
/*free=*/depthwise_conv::Free,
|
||||
static TfLiteRegistration r = {/*init=*/depthwise_conv::Init,
|
||||
/*free=*/nullptr,
|
||||
/*prepare=*/depthwise_conv::Prepare,
|
||||
/*invoke=*/depthwise_conv::Eval,
|
||||
/*profiling_string=*/nullptr,
|
||||
|
Loading…
Reference in New Issue
Block a user